Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Dec;76(6):2106–2114. doi: 10.1172/JCI112215

O6 alkylguanine-DNA alkyltransferase activity in human myeloid cells.

S L Gerson, K Miller, N A Berger
PMCID: PMC424319  PMID: 3878366

Abstract

The association between alkylating agent exposure and acute nonlymphocytic leukemia in humans indicates that myeloid cells may be particularly susceptible to mutagenic damage. Alkylating agent mutagenesis is frequently mediated through formation and persistence of a particular DNA base adduct, O6alkylguanine, which preferentially mispairs with thymine rather than cytosine, leading to point mutations. O6alkylguanine is repaired by O6alkylguanine-DNA alkyltransferase (alkyltransferase), a protein that removes the adduct, leaving an intact guanine base in DNA. We measured alkyltransferase activity in myeloid precursors and compared it with levels in other cells and tissues. In peripheral blood granulocytes, monocytes, T lymphocytes, and B lymphocytes, there was an eightfold range of activity between individuals but only a twofold range in the mean activity between cell types. Normal donors maintained stable levels of alkyltransferase activity over time. In bone marrow T lymphocytes and myeloid precursors, there was an eightfold range of alkyltransferase activity between donors. Alkyltransferase activity in the two cell types was closely correlated in individual donors, r = 0.69, P less than 0.005, but was significantly higher in the T lymphocytes than the myeloid precursors, P less than 0.05. Liver contained the highest levels of alkyltransferase of all tissues tested. By comparison, small intestine contained 34%, colon 14%, T lymphocytes 11%, brain 11%, and myeloid precursors 6.6% of the activity found in liver. Thus, human myeloid precursors have low levels of O6alkylguanine-DNA alkyltransferase compared with other tissues. Low levels of this DNA repair protein may increase the susceptibility of myeloid precursors to malignant transformation after exposure to certain alkylating agents.

Full text

PDF
2106

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger N. A., Berger S. J., Sikorski G. W., Catino D. M. Amplification of pyridine nucleotide pools in mitogen-stimulated human lymphocytes. Exp Cell Res. 1982 Jan;137(1):79–88. doi: 10.1016/0014-4827(82)90010-6. [DOI] [PubMed] [Google Scholar]
  2. Bergsagel D. E., Bailey A. J., Langley G. R., MacDonald R. N., White D. F., Miller A. B. The chemotherapy on plasma-cell myeloma and the incidence of acute leukemia. N Engl J Med. 1979 Oct 4;301(14):743–748. doi: 10.1056/NEJM197910043011402. [DOI] [PubMed] [Google Scholar]
  3. Berk P. D., Goldberg J. D., Silverstein M. N., Weinfeld A., Donovan P. B., Ellis J. T., Landaw S. A., Laszlo J., Najean Y., Pisciotta A. V. Increased incidence of acute leukemia in polycythemia vera associated with chlorambucil therapy. N Engl J Med. 1981 Feb 19;304(8):441–447. doi: 10.1056/NEJM198102193040801. [DOI] [PubMed] [Google Scholar]
  4. Bogden J. M., Eastman A., Bresnick E. A system in mouse liver for the repair of O6-methylguanine lesions in methylated DNA. Nucleic Acids Res. 1981 Jul 10;9(13):3089–3103. doi: 10.1093/nar/9.13.3089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boice J. D., Jr, Greene M. H., Killen J. Y., Jr, Ellenberg S. S., Keehn R. J., McFadden E., Chen T. T., Fraumeni J. F., Jr Leukemia and preleukemia after adjuvant treatment of gastrointestinal cancer with semustine (methyl-CCNU). N Engl J Med. 1983 Nov 3;309(18):1079–1084. doi: 10.1056/NEJM198311033091802. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Brent T. P. Suppression of cross-link formation in chloroethylnitrosourea-treated DNA by an activity in extracts of human leukemic lymphoblasts. Cancer Res. 1984 May;44(5):1887–1892. [PubMed] [Google Scholar]
  8. Brookes P., Lawley P. D. The reaction of mono- and di-functional alkylating agents with nucleic acids. Biochem J. 1961 Sep;80(3):496–503. doi: 10.1042/bj0800496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cathcart R., Goldthwait D. A. Enzymatic excision of 3-methyladenine and 7-methylguanine by a rat liver nuclear fraction. Biochemistry. 1981 Jan 20;20(2):273–280. doi: 10.1021/bi00505a007. [DOI] [PubMed] [Google Scholar]
  10. Coleman C. N., Williams C. J., Flint A., Glatstein E. J., Rosenberg S. A., Kaplan H. S. Hematologic neoplasia in patients treated for Hodgkin's disease. N Engl J Med. 1977 Dec 8;297(23):1249–1252. doi: 10.1056/NEJM197712082972303. [DOI] [PubMed] [Google Scholar]
  11. Doniger J., Day R. S., DiPaolo J. A. Quantitative assessment of the role of O6-methylguanine in the initiation of carcinogenesis by methylating agents. Proc Natl Acad Sci U S A. 1985 Jan;82(2):421–425. doi: 10.1073/pnas.82.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Frei J. V., Lawley P. D. Methylation of DNA in various organs of C57B1 mice by a carcinogenic dose of N-methyl-N-nitrosourea and stabiltty of some methylation products up to 18 hours. Chem Biol Interact. 1975 Jun;10(6):413–427. doi: 10.1016/0009-2797(75)90072-1. [DOI] [PubMed] [Google Scholar]
  13. Frei J. V., Swenson D. H., Warren W., Lawley P. D. Alkylation of deoxyribonucleic acid in vivo in various organs of C57BL mice by the carcinogens N-methyl-N-nitrosourea, N-ethyl-N-nitrosourea and ethyl methanesulphonate in relation to induction of thymic lymphoma. Some applications of high-pressure liquid chromatography. Biochem J. 1978 Sep 15;174(3):1031–1044. doi: 10.1042/bj1741031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fujiwara Y., Tatsumi M. Cross-link repair in human cells and its possible defect in Fanconi's anemia cells. J Mol Biol. 1977 Jul 15;113(4):635–649. doi: 10.1016/0022-2836(77)90227-3. [DOI] [PubMed] [Google Scholar]
  15. Gallagher R., Collins S., Trujillo J., McCredie K., Ahearn M., Tsai S., Metzgar R., Aulakh G., Ting R., Ruscetti F. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood. 1979 Sep;54(3):713–733. [PubMed] [Google Scholar]
  16. Gerson S. L., Cooper R. A. Myelopoiesis following phorbol ester exposure in human long-term bone marrow cell culture. Leuk Res. 1984;8(5):791–800. doi: 10.1016/0145-2126(84)90100-0. [DOI] [PubMed] [Google Scholar]
  17. Gerson S. L., Cooper R. A. Release of granulocyte-specific colony-stimulating activity by human bone marrow exposed to phorbol esters. Blood. 1984 Apr;63(4):878–885. [PubMed] [Google Scholar]
  18. Goth R., Rajewsky M. F. Persistence of O6-ethylguanine in rat-brain DNA: correlation with nervous system-specific carcinogenesis by ethylnitrosourea. Proc Natl Acad Sci U S A. 1974 Mar;71(3):639–643. doi: 10.1073/pnas.71.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Grafstrom R. C., Pegg A. E., Trump B. F., Harris C. C. O6-alkylguanine-DNA alkyltransferase activity in normal human tissues and cells. Cancer Res. 1984 Jul;44(7):2855–2857. [PubMed] [Google Scholar]
  20. Greene M. H., Young R. C., Merrill J. M., DeVita V. T. Evidence of a treatment dose response in acute nonlymphocytic leukemias which occur after therapy of non-Hodgkin's lymphoma. Cancer Res. 1983 Apr;43(4):1891–1898. [PubMed] [Google Scholar]
  21. Guttenplan J. B. Mutagenesis and O6-ethylguanine levels in DNA from N-nitroso-N-ethylurea-treated Salmonella typhimurium: evidence for a high mutational efficiency of O6-ethylguanine. Carcinogenesis. 1984 Feb;5(2):155–159. doi: 10.1093/carcin/5.2.155. [DOI] [PubMed] [Google Scholar]
  22. Hanawalt P. C., Cooper P. K., Ganesan A. K., Lloyd R. S., Smith C. A., Zolan M. E. Repair responses to DNA damage: enzymatic pathways in E coli and human cells. J Cell Biochem. 1982;18(3):271–283. doi: 10.1002/jcb.1982.240180303. [DOI] [PubMed] [Google Scholar]
  23. Hevesi L., Wolfson-Davidson E., Nagy J. B., Nagy O. B., Bruylants A. Contribution to the mechanism of the acid-catalyzed hydrolysis of purine nucleosides. J Am Chem Soc. 1972 Jun 28;94(13):4715–4720. doi: 10.1021/ja00768a046. [DOI] [PubMed] [Google Scholar]
  24. Huggins C. B., Grand L., Ueda N. Specific induction of erythroleukemia and myelogenous leukemia in Sprague-Dawley rats. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5411–5414. doi: 10.1073/pnas.79.17.5411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kapadia S. B., Krause J. R., Ellis L. D., Pan S. F., Wald N. Induced acute non-lymphocytic leukemia following long-term chemotherapy: a study of 20 cases. Cancer. 1980 Mar 15;45(6):1315–1321. doi: 10.1002/1097-0142(19800315)45:6<1315::aid-cncr2820450608>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  26. Kohn K. W. Interstrand cross-linking of DNA by 1,3-bis(2-chloroethyl)-1-nitrosourea and other 1-(2-haloethyl)-1-nitrosoureas. Cancer Res. 1977 May;37(5):1450–1454. [PubMed] [Google Scholar]
  27. Kyrtopoulos S. A., Vrotsou B., Golematis B., Bonatsos M., Lakiotis G. O6-Methylguanine-DNA transmethylase activity in extracts of human gastric mucosa. Carcinogenesis. 1984 Jul;5(7):943–947. doi: 10.1093/carcin/5.7.943. [DOI] [PubMed] [Google Scholar]
  28. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  29. Mintz U., Sachs L. Differences in inducing activity for human bone marrow colonies in normal serum and serum from patients with leukemia. Blood. 1973 Sep;42(3):331–339. [PubMed] [Google Scholar]
  30. Montesano R. Alkylation of DNA and tissue specificity in nitrosamine carcinogenesis. J Supramol Struct Cell Biochem. 1981;17(3):259–273. doi: 10.1002/jsscb.380170307. [DOI] [PubMed] [Google Scholar]
  31. Myrnes B., Giercksky K. E., Krokan H. Interindividual variation in the activity of O6-methyl guanine-DNA methyltransferase and uracil-DNA glycosylase in human organs. Carcinogenesis. 1983 Dec;4(12):1565–1568. doi: 10.1093/carcin/4.12.1565. [DOI] [PubMed] [Google Scholar]
  32. Neal S. B., Probst G. S. Chemically-induced sister-chromatid exchange in vivo in bone marrow of Chinese hamsters. An evaluation of 24 compounds. Mutat Res. 1983 Feb;113(1):33–43. doi: 10.1016/0165-1161(83)90239-x. [DOI] [PubMed] [Google Scholar]
  33. O'Connor P. J. Interaction of chemical carcinogens with macromolecules. J Cancer Res Clin Oncol. 1981;99(1-2):167–186. doi: 10.1007/BF00412452. [DOI] [PubMed] [Google Scholar]
  34. Olsson M., Lindahl T. Repair of alkylated DNA in Escherichia coli. Methyl group transfer from O6-methylguanine to a protein cysteine residue. J Biol Chem. 1980 Nov 25;255(22):10569–10571. [PubMed] [Google Scholar]
  35. Packard B. S., Tavassoli M., Dale G. L., Beutler E. A method for the establishment and long-term maintenance of in vitro monocytic cultures with functional and morphological homogeneity. Blood. 1982 Sep;60(3):623–626. [PubMed] [Google Scholar]
  36. Pedersen-Bjergaard J., Philip P., Pedersen N. T., Hou-Jensen K., Svejgaard A., Jensen G., Nissen N. I. Acute nonlymphocytic leukemia, preleukemia, and acute myeloproliferative syndrome secondary to treatment of other malignant diseases. II. Bone marrow cytology, cytogenetics, results of HLA typing, response to antileukemic chemotherapy, and survival in a total series of 55 patients. Cancer. 1984 Aug 1;54(3):452–462. doi: 10.1002/1097-0142(19840801)54:3<452::aid-cncr2820540313>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  37. Pegg A. E., Roberfroid M., von Bahr C., Foote R. S., Mitra S., Bresil H., Likhachev A., Montesano R. Removal of O6-methylguanine from DNA by human liver fractions. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5162–5165. doi: 10.1073/pnas.79.17.5162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pegg A. E., Wiest L., Foote R. S., Mitra S., Perry W. Purification and properties of O6-methylguanine-DNA transmethylase from rat liver. J Biol Chem. 1983 Feb 25;258(4):2327–2333. [PubMed] [Google Scholar]
  39. Pegg A. E., Wiest L. Regulation of O6-methylguanine-DNA methyltransferase levels in rat liver and kidney. Cancer Res. 1983 Mar;43(3):972–975. [PubMed] [Google Scholar]
  40. Reinherz E. L., Kung P. C., Goldstein G., Levey R. H., Schlossman S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1588–1592. doi: 10.1073/pnas.77.3.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Scudiero D. A., Meyer S. A., Clatterbuck B. E., Mattern M. R., Ziolkowski C. H., Day R. S., 3rd Sensitivity of human cell strains having different abilities to repair O6-methylguanine in DNA to inactivation by alkylating agents including chloroethylnitrosoureas. Cancer Res. 1984 Jun;44(6):2467–2474. [PubMed] [Google Scholar]
  42. Shiloh Y., Tabor E., Becker Y. Repair of potentially lethal and sublethal damage induced by neocarzinostatin in normal and ataxia-telangiectasia skin fibroblasts. Biochem Biophys Res Commun. 1983 Jan 27;110(2):483–490. doi: 10.1016/0006-291x(83)91175-0. [DOI] [PubMed] [Google Scholar]
  43. Sims J. L., Sikorski G. W., Catino D. M., Berger S. J., Berger N. A. Poly(adenosinediphosphoribose) polymerase inhibitors stimulate unscheduled deoxyribonucleic acid synthesis in normal human lymphocytes. Biochemistry. 1982 Apr 13;21(8):1813–1821. doi: 10.1021/bi00537a017. [DOI] [PubMed] [Google Scholar]
  44. Singer B. Alkylation of the O6 of guanine is only one of many chemical events that may initiate carcinogenesis. Cancer Invest. 1984;2(3):233–238. doi: 10.3109/07357908409104377. [DOI] [PubMed] [Google Scholar]
  45. Singer B. N-nitroso alkylating agents: formation and persistence of alkyl derivatives in mammalian nucleic acids as contributing factors in carcinogenesis. J Natl Cancer Inst. 1979 Jun;62(6):1329–1339. [PubMed] [Google Scholar]
  46. Sklar R., Strauss B. Removal of O6-methylguanine from DNA of normal and xeroderma pigmentosum-derived lymphoblastoid lines. Nature. 1981 Jan 29;289(5796):417–420. doi: 10.1038/289417a0. [DOI] [PubMed] [Google Scholar]
  47. Sukumar S., Notario V., Martin-Zanca D., Barbacid M. Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations. Nature. 1983 Dec 15;306(5944):658–661. doi: 10.1038/306658a0. [DOI] [PubMed] [Google Scholar]
  48. Swenberg J. A., Bedell M. A., Billings K. C., Umbenhauer D. R., Pegg A. E. Cell-specific differences in O6-alkylguanine DNA repair activity during continuous exposure to carcinogen. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5499–5502. doi: 10.1073/pnas.79.18.5499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Toorchen D., Topal M. D. Mechanisms of chemical mutagenesis and carcinogenesis: effects on DNA replication of methylation at the O6-guanine position of dGTP. Carcinogenesis. 1983 Dec;4(12):1591–1597. doi: 10.1093/carcin/4.12.1591. [DOI] [PubMed] [Google Scholar]
  50. Waldstein E. A., Cao E. H., Bender M. A., Setlow R. B. Abilities of extracts of human lymphocytes to remove O6-methylguanine from DNA. Mutat Res. 1982 Aug;95(2-3):405–416. doi: 10.1016/0027-5107(82)90274-3. [DOI] [PubMed] [Google Scholar]
  51. Wiestler O., Kleihues P., Pegg A. E. O6-alkylguanine-DNA alkyltransferase activity in human brain and brain tumors. Carcinogenesis. 1984 Jan;5(1):121–124. doi: 10.1093/carcin/5.1.121. [DOI] [PubMed] [Google Scholar]
  52. Winckler K., Obe G., Madle S., Nau H. Mutagenic activities of cyclophosphamide (NSC-26271) and its main metabolites in Salmonella typhimurium, human peripheral lymphocytes and Chinese hamster ovary cells. Mutat Res. 1984 Oct;129(1):47–55. doi: 10.1016/0027-5107(84)90122-2. [DOI] [PubMed] [Google Scholar]
  53. Yagi T., Yarosh D. B., Day R. S., 3rd Comparison of repair of O6-methylguanine produced by N-methyl-N'-nitro-N-nitrosoguanidine in mouse and human cells. Carcinogenesis. 1984 May;5(5):593–600. doi: 10.1093/carcin/5.5.593. [DOI] [PubMed] [Google Scholar]
  54. Yarosh D. B., Foote R. S., Mitra S., Day R. S., 3rd Repair of O6-methylguanine in DNA by demethylation is lacking in Mer- human tumor cell strains. Carcinogenesis. 1983;4(2):199–205. doi: 10.1093/carcin/4.2.199. [DOI] [PubMed] [Google Scholar]
  55. Yarosh D. B., Rice M., Day R. S., 3rd, Foote R. S., Mitra S. O6-Methylguanine-DNA methyltransferase in human cells. Mutat Res. 1984 Jan;131(1):27–36. doi: 10.1016/0167-8817(84)90044-0. [DOI] [PubMed] [Google Scholar]
  56. Yeager A. M., Levin F. C., Levin J. Effects of cyclophosphamide on murine bone marrow and splenic megakaryocyte-CFC, granulocyte-macrophage-CFC, and peripheral blood cell levels. J Cell Physiol. 1982 Aug;112(2):222–228. doi: 10.1002/jcp.1041120210. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES