Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Dec;76(6):2151–2160. doi: 10.1172/JCI112221

A relationship between ultrasonic integrated backscatter and myocardial contractile function.

S A Wickline, L J Thomas 3rd, J G Miller, B E Sobel, J E Perez
PMCID: PMC424332  PMID: 3908482

Abstract

We have shown previously that the physiologic, mechanical cardiac cycle is associated with a parallel, cardiac cycle-dependent variation of integrated backscatter (IB). However, the mechanisms responsible are not known. The mathematical and physiological considerations explored in the present study suggest that the relationship between backscatter and myocardial contractile function reflects cyclic alterations in myofibrillar elastic parameters, with the juxtaposition of intracellular and extracellular elastic elements that have different intrinsic acoustic impedances providing an appropriately sized scattering interface at the cellular level. Cardiac cycle-dependent changes in the degree of local acoustic impedance mismatch therefore may elicit concomitant changes in backscatter. Because acoustic impedance is determined partly by elastic modulus, changes in local elastic moduli resulting from the non-Hookian behavior of myocardial elastic elements exposed to stretch may alter the extent of impedance mismatch. When cardiac cell mechanical behavior is represented by a three-component Maxwell-type model of muscle mechanics, the systolic decrease in IB that we have observed experimentally is predicted. Our prior observations of regional intramural differences in IB and the dependence of IB on global contractile function are accounted for as well. When the model is tested experimentally by assessing its ability to predict the regional and global behavior of backscatter in response to passive left ventricular distention, good concordance is observed.

Full text

PDF
2151

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barzilai B., Madaras E. I., Sobel B. E., Miller J. G., Pérez J. E. Effects of myocardial contraction on ultrasonic backscatter before and after ischemia. Am J Physiol. 1984 Sep;247(3 Pt 2):H478–H483. doi: 10.1152/ajpheart.1984.247.3.H478. [DOI] [PubMed] [Google Scholar]
  2. Caulfield J. B., Borg T. K. The collagen network of the heart. Lab Invest. 1979 Mar;40(3):364–372. [PubMed] [Google Scholar]
  3. Chadwick R. S. Mechanics of the left ventricle. Biophys J. 1982 Sep;39(3):279–288. doi: 10.1016/S0006-3495(82)84518-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fabiato A., Fabiato F. Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells. J Gen Physiol. 1978 Nov;72(5):667–699. doi: 10.1085/jgp.72.5.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feit T. S. Diastolic pressure-volume relations and distribution of pressure and fiber extension across the wall of a model left ventricle. Biophys J. 1979 Oct;28(1):143–166. doi: 10.1016/S0006-3495(79)85165-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fish D., Orenstein J., Bloom S. Passive stiffness of isolated cardiac and skeletal myocytes in the hamster. Circ Res. 1984 Mar;54(3):267–276. doi: 10.1161/01.res.54.3.267. [DOI] [PubMed] [Google Scholar]
  7. Gallagher K. P., Osakada G., Hess O. M., Koziol J. A., Kemper W. S., Ross J., Jr Subepicardial segmental function during coronary stenosis and the role of myocardial fiber orientation. Circ Res. 1982 Mar;50(3):352–359. doi: 10.1161/01.res.50.3.352. [DOI] [PubMed] [Google Scholar]
  8. Ghista D. N., Sandler H. An analytic elastic-viscoelastic model for the shape and the forces in the left ventricle. J Biomech. 1969 Mar;2(1):35–47. doi: 10.1016/0021-9290(69)90040-2. [DOI] [PubMed] [Google Scholar]
  9. Glueck R. M., Mottley J. G., Miller J. G., Sobel B. E., Pérez J. E. Effects of coronary artery occlusion and reperfusion on cardiac cycle-dependent variation of myocardial ultrasonic backscatter. Circ Res. 1985 May;56(5):683–689. doi: 10.1161/01.res.56.5.683. [DOI] [PubMed] [Google Scholar]
  10. Huisman R. M., Elzinga G., Westerhof N., Sipkema P. Measurement of left ventricular wall stress. Cardiovasc Res. 1980 Mar;14(3):142–153. doi: 10.1093/cvr/14.3.142. [DOI] [PubMed] [Google Scholar]
  11. Huxley A. F. Muscular contraction. J Physiol. 1974 Nov;243(1):1–43. [PMC free article] [PubMed] [Google Scholar]
  12. Jennings R. B., Ganote C. E. Structural changes in myocardium during acute ischemia. Circ Res. 1974 Sep;35 (Suppl 3):156–172. [PubMed] [Google Scholar]
  13. KIRK E. S., HONIG C. R. NONUNIFORM DISTRIBUTION OF BLOOD FLOW AND GRADIENTS OF OXYGEN TENSION WITHIN THE HEART. Am J Physiol. 1964 Sep;207:661–668. doi: 10.1152/ajplegacy.1964.207.3.661. [DOI] [PubMed] [Google Scholar]
  14. Kloner R. A., Ganote C. E., Whalen D. A., Jr, Jennings R. B. Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Pathol. 1974 Mar;74(3):399–422. [PMC free article] [PubMed] [Google Scholar]
  15. Laks M. M., Nisenson M. J., Swan H. J. Myocardial cell and sarcomere lengths in the normal dog heart. Circ Res. 1967 Nov;21(5):671–678. doi: 10.1161/01.res.21.5.671. [DOI] [PubMed] [Google Scholar]
  16. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
  17. LeWinter M. M., Kent R. S., Kroener J. M., Carew T. E., Covell J. W. Regional differences in myocardial performance in the left ventricle of the dog. Circ Res. 1975 Aug;37(2):191–199. doi: 10.1161/01.res.37.2.191. [DOI] [PubMed] [Google Scholar]
  18. Madaras E. I., Barzilai B., Perez J. E., Sobel B. E., Miller J. G. Changes in myocardial backscatter throughout the cardiac cycle. Ultrason Imaging. 1983 Jul;5(3):229–239. doi: 10.1177/016173468300500303. [DOI] [PubMed] [Google Scholar]
  19. Mason P. Dynamic stiffness and crossbridge action in muscle. Biophys Struct Mech. 1977 Dec 27;4(1):15–25. doi: 10.1007/BF00538837. [DOI] [PubMed] [Google Scholar]
  20. Mimbs J. W., Bauwens D., Cohen R. D., O'Donnell M., Miller J. G., Sobel B. E. Effects of myocardial ischemia on quantitative ultrasonic backscatter and identification of responsible determinants. Circ Res. 1981 Jul;49(1):89–96. doi: 10.1161/01.res.49.1.89. [DOI] [PubMed] [Google Scholar]
  21. Mimbs J. W., O'Donnell M., Bauwens D., Miller J. W., Sobel B. E. The dependence of ultrasonic attenuation and backscatter on collagen content in dog and rabbit hearts. Circ Res. 1980 Jul;47(1):49–58. doi: 10.1161/01.res.47.1.49. [DOI] [PubMed] [Google Scholar]
  22. Mimbs J. W., O'Donnell M., Miller J. G., Sobel B. E. Detection of cardiomyopathic changes induced by doxorubicin based on quantitative analysis of ultrasonic backscatter. Am J Cardiol. 1981 May;47(5):1056–1060. doi: 10.1016/0002-9149(81)90212-5. [DOI] [PubMed] [Google Scholar]
  23. Mirsky I. Left ventricular stresses in the intact human heart. Biophys J. 1969 Feb;9(2):189–208. doi: 10.1016/S0006-3495(69)86379-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moriarty T. F. The law of Laplace. Its limitations as a relation for diastolic pressure, volume, or wall stress of the left ventricle. Circ Res. 1980 Mar;46(3):321–331. doi: 10.1161/01.res.46.3.321. [DOI] [PubMed] [Google Scholar]
  25. O'Donnell M., Mimbs J. W., Miller J. G. Relationship between collagen and ultrasonic backscatter in myocardial tissue. J Acoust Soc Am. 1981 Feb;69(2):580–588. doi: 10.1121/1.385433. [DOI] [PubMed] [Google Scholar]
  26. O'Donnell M., Mimbs J. W., Miller J. G. The relationship between collagen and ultrasonic attenuation in myocardial tissue. J Acoust Soc Am. 1979 Feb;65(2):512–517. doi: 10.1121/1.382352. [DOI] [PubMed] [Google Scholar]
  27. Olshansky B., Collins S. M., Skorton D. J., Prasad N. V. Variation of left ventricular myocardial gray level on two-dimensional echocardiograms as a result of cardiac contraction. Circulation. 1984 Dec;70(6):972–977. doi: 10.1161/01.cir.70.6.972. [DOI] [PubMed] [Google Scholar]
  28. Orenstein J., Hogan D., Bloom S. Surface cables of cardiac myocytes. J Mol Cell Cardiol. 1980 Aug;12(8):771–780. doi: 10.1016/0022-2828(80)90079-6. [DOI] [PubMed] [Google Scholar]
  29. Pierce W. H. Body forces and pressures in elastic models of the myocardium. Biophys J. 1981 Apr;34(1):35–59. doi: 10.1016/S0006-3495(81)84836-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Price M. G. Molecular analysis of intermediate filament cytoskeleton--a putative load-bearing structure. Am J Physiol. 1984 Apr;246(4 Pt 2):H566–H572. doi: 10.1152/ajpheart.1984.246.4.H566. [DOI] [PubMed] [Google Scholar]
  31. Pérez J. E., Barzilai B., Madaras E. I., Glueck R. M., Saffitz J. E., Johnston P., Miller J. G., Sobel B. E. Applicability of ultrasonic tissue characterization for longitudinal assessment and differentiation of calcification and fibrosis in cardiomyopathy. J Am Coll Cardiol. 1984 Jul;4(1):88–95. doi: 10.1016/s0735-1097(84)80323-x. [DOI] [PubMed] [Google Scholar]
  32. SONNENBLICK E. H. SERIES ELASTIC AND CONTRACTILE ELEMENTS IN HEART MUSCLE: CHANGES IN MUSCLE LENGTH. Am J Physiol. 1964 Dec;207:1330–1338. doi: 10.1152/ajplegacy.1964.207.6.1330. [DOI] [PubMed] [Google Scholar]
  33. Sabbah H. N., Marzilli M., Stein P. D. The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol. 1981 Jun;240(6):H920–H926. doi: 10.1152/ajpheart.1981.240.6.H920. [DOI] [PubMed] [Google Scholar]
  34. Sasayama S., Franklin D., Ross J., Jr, Kemper W. S., McKown D. Dynamic changes in left ventricular wall thickness and their use in analyzing cardiac function in the conscious dog. Am J Cardiol. 1976 Dec;38(7):870–879. doi: 10.1016/0002-9149(76)90800-6. [DOI] [PubMed] [Google Scholar]
  35. Spotnitz H. M., Sonnenblick E. H., Spiro D. Relation of ultrastructure to function in the intact heart: sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat. Circ Res. 1966 Jan;18(1):49–66. doi: 10.1161/01.res.18.1.49. [DOI] [PubMed] [Google Scholar]
  36. Stein P. D., Marzilli M., Sabbah H. N., Lee T. Systolic and diastolic pressure gradients within the left ventricular wall. Am J Physiol. 1980 May;238(5):H625–H630. doi: 10.1152/ajpheart.1980.238.5.H625. [DOI] [PubMed] [Google Scholar]
  37. Streeter D. D., Jr, Hanna W. T. Engineering mechanics for successive states in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circ Res. 1973 Dec;33(6):656–664. doi: 10.1161/01.res.33.6.656. [DOI] [PubMed] [Google Scholar]
  38. Streeter D. D., Jr, Vaishnav R. N., Patel D. J., Spotnitz H. M., Ross J., Jr, Sonnenblick E. H. Stress distribution in the canine left ventricle during diastole and systole. Biophys J. 1970 Apr;10(4):345–363. doi: 10.1016/S0006-3495(70)86306-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wickline S. A., Thomas L. J., 3rd, Miller J. G., Sobel B. E., Pérez J. E. The dependence of myocardial ultrasonic integrated backscatter on contractile performance. Circulation. 1985 Jul;72(1):183–192. doi: 10.1161/01.cir.72.1.183. [DOI] [PubMed] [Google Scholar]
  40. Yin F. C. Ventricular wall stress. Circ Res. 1981 Oct;49(4):829–842. doi: 10.1161/01.res.49.4.829. [DOI] [PubMed] [Google Scholar]
  41. Yoran C., Covell J. W., Ross J., Jr Structural basis for the ascending limb of left ventricular function. Circ Res. 1973 Feb;32(2):297–303. doi: 10.1161/01.res.32.2.297. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES