Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Dec;76(6):2182–2190. doi: 10.1172/JCI112226

DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA.

R M Bennett, G T Gabor, M M Merritt
PMCID: PMC424340  PMID: 3001145

Abstract

Previous studies have indicated that white blood cells possess DNA on their outer membranes. In this study we set out to determine whether exogenous DNA bound to cells in a fashion compatible with a ligand receptor union. Purified populations of white blood cells; neutrophils (polymorphonuclear leukocytes, PMN), adherent mononuclear cells (ADMC), rosetting lymphocytes (E+ cells), and nonrosetting lymphocytes (E- cells) were incubated with radiolabeled lambda phage DNA in increasing concentrations. Binding of [3H]DNA was a saturable process and was inhibited by excess cold DNA and prior trypsinization of the cells. Rate zonal density centrifugation of purified cell membrane preparations confirmed that DNA was binding to the outer cell surface. The dissociation constant for all four cell types was approximately 10(-9) M, and from 0.81 X 10(3) to 2.6 X 10(3) molecules of lambda phage DNA bound to each cell depending upon cell type. Binding was not competitively inhibited by RNA, polydeoxyadenylic acid-polydeoxythymidylic acid (poly [d(A).d(T)]), or mononucleotides. Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE)-separated proteins from PMN, ADMC, E+, and E- cells were electrophoretically blotted onto nitrocellulose sheets; a probe of biotin-labeled DNA indicated a single species of DNA-binding molecule migrating in a position consistent with a molecular weight of 30,000. Isotopic and immunofluorescent studies indicate that DNA is internalized and degraded to oligonucleotides; this process is inhibited by cycloheximide. These results support the notion that there is a common binding site for DNA on white blood cells, that the stoichiometry of the association is compatible with a ligand receptor relationship, and that this apparent receptor is responsible for the endocytosis and degradation of exogenous DNA.

Full text

PDF
2182

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anker P., Stroun M., Maurice P. A. Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res. 1975 Sep;35(9):2375–2382. [PubMed] [Google Scholar]
  2. Bagby G. C., Jr, Rigas V. D., Bennett R. M., Vandenbark A. A., Garewal H. S. Interaction of lactoferrin, monocytes, and T lymphocyte subsets in the regulation of steady-state granulopoiesis in vitro. J Clin Invest. 1981 Jul;68(1):56–63. doi: 10.1172/JCI110254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett R. M., Bagby G. C., Davis J. Calcium-dependent polymerization of lactoferrin. Biochem Biophys Res Commun. 1981 Jul 16;101(1):88–95. doi: 10.1016/s0006-291x(81)80014-9. [DOI] [PubMed] [Google Scholar]
  4. Bennett R. M., Davis J., Campbell S., Portnoff S. Lactoferrin binds to cell membrane DNA. Association of surface DNA with an enriched population of B cells and monocytes. J Clin Invest. 1983 Mar;71(3):611–618. doi: 10.1172/JCI110807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett R. M., Davis J. Lactoferrin binding to human peripheral blood cells: an interaction with a B-enriched population of lymphocytes and a subpopulation of adherent mononuclear cells. J Immunol. 1981 Sep;127(3):1211–1216. [PubMed] [Google Scholar]
  6. Boldt D. H., MacDermott R. P., Speckart S. F., Nash G. S. Excretion of DNA by purified human lymphocyte subpopulations. J Immunol. 1977 Apr;118(4):1495–1498. [PubMed] [Google Scholar]
  7. Bowen B., Steinberg J., Laemmli U. K., Weintraub H. The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res. 1980 Jan 11;8(1):1–20. doi: 10.1093/nar/8.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bretscher M. S. Endocytosis: relation to capping and cell locomotion. Science. 1984 May 18;224(4650):681–686. doi: 10.1126/science.6719108. [DOI] [PubMed] [Google Scholar]
  9. Clejan L., Menahem H. Binding of deoxyribonucleic acid to the surface of human platelets. Acta Haematol. 1977;58(2):84–88. doi: 10.1159/000207812. [DOI] [PubMed] [Google Scholar]
  10. Cuatrecasas P., Hollenberg M. D. Membrane receptors and hormone action. Adv Protein Chem. 1976;30:251–451. doi: 10.1016/s0065-3233(08)60481-7. [DOI] [PubMed] [Google Scholar]
  11. Distelhorst C. W., Cramer K., Rogers J. C. Selective release of excreted DNA sequences from phytohemagglutinin-stimulated human peripheral blood lymphocytes. Effects of trypsin and divalent cations. J Clin Invest. 1978 May;61(5):1204–1217. doi: 10.1172/JCI109036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ehrlich M., Sarafyan L. P., Myers D. J. Interaction of microbial DNA with cultured mammalian cells. Binding of the donor DNA to the cell surface. Biochim Biophys Acta. 1976 Dec 13;454(3):397–409. doi: 10.1016/0005-2787(76)90266-5. [DOI] [PubMed] [Google Scholar]
  13. Emlen W., Mannik M. Kinetics and mechanisms for removal of circulating single-stranded DNA in mice. J Exp Med. 1978 Mar 1;147(3):684–699. doi: 10.1084/jem.147.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fiedel B. A., Schoenberger J. S., Gewurz H. Modulation of platelet activation by native DNA. J Immunol. 1979 Dec;123(6):2479–2483. [PubMed] [Google Scholar]
  15. Gabor G., Bennett R. M. Biotin-labelled DNA: a novel approach for the recognition of a DNA binding site on cell membranes. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1034–1039. doi: 10.1016/0006-291x(84)91195-1. [DOI] [PubMed] [Google Scholar]
  16. Hall M. R., Meinke W., Goldstein D. A., Lerner R. A. Synthesis of cytoplasmic membrane-associated DNA in lymphocyte nucleus. Nat New Biol. 1971 Dec 22;234(51):227–229. doi: 10.1038/newbio234227a0. [DOI] [PubMed] [Google Scholar]
  17. Hoessli D. C., Jones A. P., Eisenstadt J. M., Waksman B. H. Studies on DNA release by cultured rat lymphoblasts. Int Arch Allergy Appl Immunol. 1977;54(6):517–528. doi: 10.1159/000231872. [DOI] [PubMed] [Google Scholar]
  18. Jachertz D., Anker P., Maurice P. A., Stroun M. Information carried by the DNA released by antigen-stimulated lymphocytes. Immunology. 1979 Aug;37(4):753–763. [PMC free article] [PubMed] [Google Scholar]
  19. Langer P. R., Waldrop A. A., Ward D. C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6633–6637. doi: 10.1073/pnas.78.11.6633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lerner R. A., Meinke W., Goldstein D. A. Membrane-associated DNA in the cytoplasm of diploid human lymphocytes. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1212–1216. doi: 10.1073/pnas.68.6.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Locker J. D., Medof M. E., Bennett R. M., Sukhupunyaraksa S. Characterization of DNA used to assay sera for anti-DNA antibodies; determination of the specificities of anti-DNA antibodies in SLE and non-SLE rheumatic disease states. J Immunol. 1977 Feb;118(2):694–701. [PubMed] [Google Scholar]
  22. Mackey J. K., Brackmann K. H., Green M. R., Green M. Preparation and characterization of highly radioactive in vitro labeled adenovirus DNA and DNA restriction fragments. Biochemistry. 1977 Oct 4;16(20):4478–4483. doi: 10.1021/bi00639a023. [DOI] [PubMed] [Google Scholar]
  23. Maeda T., Balakrishnan K., Mehdi S. Q. A simple and rapid method for the preparation of plasma membranes. Biochim Biophys Acta. 1983 May 26;731(1):115–120. doi: 10.1016/0005-2736(83)90404-2. [DOI] [PubMed] [Google Scholar]
  24. Meinke W., Hall M. R., Goldstein D. A., Kohne D. E., Lerner R. A. Physical properties of cytoplasmic membrane-associated DNA. J Mol Biol. 1973 Jun 25;78(1):43–56. doi: 10.1016/0022-2836(73)90427-0. [DOI] [PubMed] [Google Scholar]
  25. Moyer M. P. The association of DNA and RNA with membranes. Int Rev Cytol. 1979;61:1–61. doi: 10.1016/s0074-7696(08)61994-4. [DOI] [PubMed] [Google Scholar]
  26. Olsen I., Harris G. Uptake and release of DNA by lymphoid tissue and cells. Immunology. 1974 Dec;27(6):973–987. [PMC free article] [PubMed] [Google Scholar]
  27. Reid B. L., Charlson A. J. Cytoplasmic and cell surface deoxyribonucleic acids with consideration of their origin. Int Rev Cytol. 1979;60:27–52. doi: 10.1016/s0074-7696(08)61258-9. [DOI] [PubMed] [Google Scholar]
  28. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  29. Rogers J. C., Boldt D., Kornfeld S., Skinner A., Valeri C. R. Excretion of deoxyribonucleic acid by lymphocytes stimulated with phytohemagglutinin or antigen. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1685–1689. doi: 10.1073/pnas.69.7.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rogers J. C. Characterization of DNA excreted from phytohemagglutinin-stimulated lymphocytes. J Exp Med. 1976 May 1;143(5):1249–1264. doi: 10.1084/jem.143.5.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rogers J. C., Kerstiens J. W. Capping of DNA on phytohemagglutinin-stimulated human lymphoblasts. J Immunol. 1981 Feb;126(2):703–705. [PubMed] [Google Scholar]
  32. Russell J. L., Golub E. S. Leukemia in AKR mice: a defined suppressor cell population expressing membrane-associated DNA. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6211–6214. doi: 10.1073/pnas.75.12.6211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  34. Williams J. R., Little J. B., Shipley W. U. Association of mammalian cell death with a specific endonucleolytic degradation of DNA. Nature. 1974 Dec 20;252(5485):754–755. doi: 10.1038/252754a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES