Abstract
Effects of alterations in metabolic clearance rates, hepatic extraction, and plasma concentrations of insulin on hepatic and peripheral contribution to hypoglycemia and glucose counterregulation were studied in conscious dogs. Since insulin and sulfated insulin had markedly different metabolic clearance rates (34 +/- 1 vs. 16 +/- 1 ml/kg per min, respectively) and fractional hepatic extraction (42 +/- 1% vs. 15 +/- 2%, respectively), biologically equivalent amounts infused intraportally produced twofold higher hepatic vein and artery sulphated insulin concentrations and concentrations that were 30% higher in the portal vein. This significantly larger arterial/portal concentration ratio (0.67 vs. 0.45, respectively) permitted assessment of differential distribution of insulin on glucose turnover using [3-3H]glucose. Insulin and sulfated insulin (1 and 2 mU/kg per min) caused similar hypoglycemia. While insulin transiently suppressed glucose production and increased glucose disappearance, sulfated insulin had significantly greater effects on glucose disappearance and clearance, without suppression of glucose production. Despite similar hypoglycemia, sulfated insulin caused greater increment in glucagon. 3 mU/kg per min insulin caused more rapid and greater hypoglycemia, greater glucose clearance, and greater glucagon increments without suppression of glucose production, which indicates that with larger doses of insulin counterregulation can absolutely mask the suppressive effect of insulin. The effects of insulin and sulfated insulin were evaluated using euglycemic clamp to eliminate interference from stimulated counterregulation. Sequential infusion of 1 and 2 mU/kg per min of both insulins suppressed endogenous glucose production to 0 at 150 min, which indicates that the apparent lack of a hepatic effect of sulfated insulin during hypoglycemia was masked by greater counterregulation. This greater counterregulation may reflect greater peripheral glucose clearance, and prevented greater hypoglycemia than after the same insulin doses. The results indicate that the different rates of removal and the total metabolic clearance rate caused different concentrations and relative distribution between the portal and arterial blood compartments, leading to the significantly different contributions by the liver and peripheral tissues to the same hypoglycemia.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altszuler N., Barkai A., Bjerknes C., Gottlieb B., Steele R. Glucose turnover values in the dog obtained with various species of labeled glucose. Am J Physiol. 1975 Dec;229(6):1662–1667. doi: 10.1152/ajplegacy.1975.229.6.1662. [DOI] [PubMed] [Google Scholar]
- Birnbaumer L., Swartz T. L., Abramowitz J., Mintz P. W., Iyengar R. Transient and steady state kinetics of the interaction of guanyl nucleotides with the adenylyl cyclase system from rat liver plasma membranes. Interpretation in terms of a simple two-state model. J Biol Chem. 1980 Apr 25;255(8):3542–3551. [PubMed] [Google Scholar]
- Bolli G., De Feo P., Perriello G., De Cosmo S., Compagnucci P., Santeusanio F., Brunetti P., Unger R. H. Mechanisms of glucagon secretion during insulin-induced hypoglycemia in man. Role of the beta cell and arterial hyperinsulinemia. J Clin Invest. 1984 Apr;73(4):917–922. doi: 10.1172/JCI111315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cherrington A. D., Chiasson J. L., Liljenquist J. E., Jennings A. S., Keller U., Lacy W. W. The role of insulin and glucagon in the regulation of basal glucose production in the postabsorptive dog. J Clin Invest. 1976 Dec;58(6):1407–1418. doi: 10.1172/JCI108596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christensen N. J. Plasma norepinephrine and epinephrine in untreated diabetics, during fasting and after insulin administration. Diabetes. 1974 Jan;23(1):1–8. doi: 10.2337/diab.23.1.1. [DOI] [PubMed] [Google Scholar]
- Clarke W. L., Santiago J. V., Thomas L., Ben-Galim E., Haymond M. W., Cryer P. E. Adrenergic mechanisms in recovery from hypoglycemia in man: adrenergic blockade. Am J Physiol. 1979 Feb;236(2):E147–E152. doi: 10.1152/ajpendo.1979.236.2.E147. [DOI] [PubMed] [Google Scholar]
- Cowan J. S., Hetenyi G., Jr Glucoregulatory responses in normal and diabetic dogs recorded by a new tracer method. Metabolism. 1971 Apr;20(4):360–372. doi: 10.1016/0026-0495(71)90098-9. [DOI] [PubMed] [Google Scholar]
- Crofford O. B. The uptake and inactivation of native insulin by isolated fat cells. J Biol Chem. 1968 Jan 25;243(2):362–369. [PubMed] [Google Scholar]
- DEBODO R. C., STEELE R., ALTSZULER N., DUNN A., BISHOP J. S. ON THE HORMONAL REGULATION OF CARBOHYDRATE METABOLISM; STUDIES WITH C14 GLUCOSE. Recent Prog Horm Res. 1963;19:445–488. [PubMed] [Google Scholar]
- DeFronzo R. A., Andres R., Bedsoe T. A., Boden G., Faloona G. A., Tobin J. D. A test of the hypothesis that the rate of fall in glucose concentration triggers counterregulatory hormonal responses in man. Diabetes. 1977 May;26(5):445–452. doi: 10.2337/diab.26.5.445. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
- Eigler N., Saccà L., Sherwin R. S. Synergistic interactions of physiologic increments of glucagon, epinephrine, and cortisol in the dog: a model for stress-induced hyperglycemia. J Clin Invest. 1979 Jan;63(1):114–123. doi: 10.1172/JCI109264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freychet P., Kahn R., Roth J., Neville D. M., Jr Insulin interactions with liver plasma membranes. Independence of binding of the hormone and its degradation. J Biol Chem. 1972 Jun 25;247(12):3953–3961. [PubMed] [Google Scholar]
- Gerich J. E., Schneider V., Dippe S. E., Langlois M., Noacco C., Karam J. H., Forsham P. H. Characterization of the glucagon response to hypoglycemia in man. J Clin Endocrinol Metab. 1974 Jan;38(1):77–82. doi: 10.1210/jcem-38-1-77. [DOI] [PubMed] [Google Scholar]
- Gorden P., Carpentier J. L., Freychet P. O., Orci L. Internalization of polypeptide hormones: mechanism, intracellular localization and significance. Diabetologia. 1980 Apr;18(4):263–274. doi: 10.1007/BF00251003. [DOI] [PubMed] [Google Scholar]
- Gorus F. K., Malaisse W. J., Pipeleers D. G. Differences in glucose handling by pancreatic A- and B-cells. J Biol Chem. 1984 Jan 25;259(2):1196–1200. [PubMed] [Google Scholar]
- Greenwood F. C., Landon J., Stamp T. C. The plasma sugar, free fatty acid, cortisol, and growth hormone response to insulin. I. In control subjects. J Clin Invest. 1966 Apr;45(4):429–436. doi: 10.1172/JCI105357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HETENYI G., Jr, WRENSHALL G. A., BEST C. H. Rates of production, utilization, accumulation and apparent distribution space of glucose. Effects of insulin in dogs using a validated tracer method. Diabetes. 1961 Jul-Aug;10:304–311. doi: 10.2337/diab.10.4.304. [DOI] [PubMed] [Google Scholar]
- Hartley C. J., Cole J. S. An ultrasonic pulsed Doppler system for measuring blood flow in small vessels. J Appl Physiol. 1974 Oct;37(4):626–629. doi: 10.1152/jappl.1974.37.4.626. [DOI] [PubMed] [Google Scholar]
- Hartley C. J., Hanley H. G., Lewis R. M., Cole J. S. Synchronized pulsed Doppler blood flow and ultrasonic dimension measurement in conscious dogs. Ultrasound Med Biol. 1978;4(2):99–110. doi: 10.1016/0301-5629(78)90035-2. [DOI] [PubMed] [Google Scholar]
- Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
- Hisatomi A., Maruyama H., Orci L., Vasko M., Unger R. H. Adrenergically mediated intrapancreatic control of the glucagon response to glucopenia in the isolated rat pancreas. J Clin Invest. 1985 Feb;75(2):420–426. doi: 10.1172/JCI111716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishida T., Chap Z., Chou J., Lewis R. M., Hartley C. J., Entman M. L., Field J. B. Effects of portal and peripheral venous insulin infusion on glucose production and utilization in depancreatized, conscious dogs. Diabetes. 1984 Oct;33(10):984–990. doi: 10.2337/diab.33.10.984. [DOI] [PubMed] [Google Scholar]
- Ishida T., Chap Z., Chou J., Lewis R. M., Hartley C. J., Entman M. L., Field J. B. Hepatic extraction of exogenous insulin in depancreatized conscious dogs. Am J Physiol. 1984 Apr;246(4 Pt 1):E369–E379. doi: 10.1152/ajpendo.1984.246.4.E369. [DOI] [PubMed] [Google Scholar]
- Ishida T., Chap Z., Chou J., Lewis R., Hartley C., Entman M., Field J. B. Differential effects of oral, peripheral intravenous, and intraportal glucose on hepatic glucose uptake and insulin and glucagon extraction in conscious dogs. J Clin Invest. 1983 Aug;72(2):590–601. doi: 10.1172/JCI111007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishida T., Lewis R. M., Hartley C. J., Entman M. L., Field J. B. Comparison of hepatic extraction of insulin and glucagon in conscious and anesthetized dogs. Endocrinology. 1983 Mar;112(3):1098–1109. doi: 10.1210/endo-112-3-1098. [DOI] [PubMed] [Google Scholar]
- Kahn C. R., Goldfine I. D., Neville D. M., Jr, De Meyts P. Alterations in insulin binding induced by changes in vivo in the levels of glucocorticoids and growth hormone. Endocrinology. 1978 Oct;103(4):1054–1066. doi: 10.1210/endo-103-4-1054. [DOI] [PubMed] [Google Scholar]
- Kaplan S. A., Morris J. W., Davidson M. B., Gerschenson L. E., Scott M. Triacetylated insulin: biologic activity and resistance to degradation. Metabolism. 1976 Nov;25(11):1209–1216. doi: 10.1016/s0026-0495(76)80004-2. [DOI] [PubMed] [Google Scholar]
- Krupp M. N., Livingston J. N. The binding and degradation of insulin by rat liver membranes: demonstration of three distinct insulin-binding components in detergent-solubilized material from liver plasma membrane. Endocrinology. 1980 Jan;106(1):179–184. doi: 10.1210/endo-106-1-179. [DOI] [PubMed] [Google Scholar]
- LEVINE R. ANALYSIS OF THE ACTIONS OF THE HORMONAL ANTAGONISTS OF INSULIN. Diabetes. 1964 Jul-Aug;13:362–365. doi: 10.2337/diab.13.4.362. [DOI] [PubMed] [Google Scholar]
- LeCam A., Maxfield F., Willingham M., Pastan I. Insulin stimulation of amino acid transport in isolated rat hepatocytes is independent of hormone internalization. Biochem Biophys Res Commun. 1979 Jun 13;88(3):873–881. doi: 10.1016/0006-291x(79)91490-6. [DOI] [PubMed] [Google Scholar]
- Lilavivathana U., Brodows R. G., Woolf P. D., Campbell R. G. Counterregulatory hormonal responses to rapid glucose lowering in diabetic man. Diabetes. 1979 Oct;28(10):873–877. doi: 10.2337/diab.28.10.873. [DOI] [PubMed] [Google Scholar]
- MADISON L. L., COMBES B., ADAMS R., STRICKLAND W. The physiological significance of the secretion of endogenous insulin into the portal circulation. III. Evidence for a direct immediate effect of insulin on the balance of glucose across the liver. J Clin Invest. 1960 Mar;39:507–522. doi: 10.1172/JCI104065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOLONEY P. J., APRILE M. A., WILSON S. SULFATED INSULIN FOR TREATMENT OF INSULIN-RESISTANT DIABETICS. J New Drugs. 1964 Sep-Oct;4(5):258–263. doi: 10.1002/j.1552-4604.1964.tb00356.x. [DOI] [PubMed] [Google Scholar]
- Marshall S., Olefsky J. M. The endocytotic-internalization pathway of insulin metabolism: relationship to insulin degradation and activation of glucose transport. Endocrinology. 1980 Dec;107(6):1937–1945. doi: 10.1210/endo-107-6-1937. [DOI] [PubMed] [Google Scholar]
- Maruyama H., Hisatomi A., Orci L., Grodsky G. M., Unger R. H. Insulin within islets is a physiologic glucagon release inhibitor. J Clin Invest. 1984 Dec;74(6):2296–2299. doi: 10.1172/JCI111658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mezey E., Reisine T. D., Brownstein M. J., Palkovits M., Axelrod J. Beta-adrenergic mechanism of insulin-induced adrenocorticotropin release from the anterior pituitary. Science. 1984 Nov 30;226(4678):1085–1087. doi: 10.1126/science.6093262. [DOI] [PubMed] [Google Scholar]
- Neville D. M., Jr Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta. 1968 Apr 9;154(3):540–552. doi: 10.1016/0005-2795(68)90014-7. [DOI] [PubMed] [Google Scholar]
- Nomura M., Zinman B., Bahoric A., Marliss E. B., Albisser A. M. Intravenous infusions of sulfated insulin normalize plasma glucose levels in pancreatectomized dogs. Diabetes. 1983 Sep;32(9):788–792. doi: 10.2337/diab.32.9.788. [DOI] [PubMed] [Google Scholar]
- Parrilla R., Goodman M. N., Toews C. J. Effect of glucagon: insulin ratios on hepatic metabolism. Diabetes. 1974 Sep;23(9):725–731. doi: 10.2337/diab.23.9.725. [DOI] [PubMed] [Google Scholar]
- ROTH J., GLICK S. M., YALOW R. S., BERSONSA Hypoglycemia: a potent stimulus to secretion of growth hormone. Science. 1963 May 31;140(3570):987–988. doi: 10.1126/science.140.3570.987. [DOI] [PubMed] [Google Scholar]
- Rizza R. A., Cryer P. E., Gerich J. E. Role of glucagon, catecholamines, and growth hormone in human glucose counterregulation. Effects of somatostatin and combined alpha- and beta-adrenergic blockade on plasma glucose recovery and glucose flux rates after insulin-induced hypoglycemia. J Clin Invest. 1979 Jul;64(1):62–71. doi: 10.1172/JCI109464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rizza R. A., Mandarino L. J., Gerich J. E. Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol. 1981 Jun;240(6):E630–E639. doi: 10.1152/ajpendo.1981.240.6.E630. [DOI] [PubMed] [Google Scholar]
- STEELE R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959 Sep 25;82:420–430. doi: 10.1111/j.1749-6632.1959.tb44923.x. [DOI] [PubMed] [Google Scholar]
- Soll A. H., Kahn C. R., Neville D. M., Jr Insulin binding to liver plasm membranes in the obese hyperglycemic (ob/ob) mouse. Demonstration of a decreased number of functionally normal receptors. J Biol Chem. 1975 Jun 25;250(12):4702–4707. [PubMed] [Google Scholar]
- Terris S., Steiner D. F. Binding and degradation of 125I-insulin by rat hepatocytes. J Biol Chem. 1975 Nov 10;250(21):8389–8398. [PubMed] [Google Scholar]
- Terris S., Steiner D. F. Retention and degradation of 125I-insulin by perfused livers from diabetic rats. J Clin Invest. 1976 Apr;57(4):885–896. doi: 10.1172/JCI108365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tompkins C. V., Brandenburg D., Jones R. H., Sönksen P. H. Mechanism of action of insulin and insulin analogues. A comparison of the hepatic and peripheral effects on glucose turnover of insulin, proinsulin and three insulin analogues modified at positions A1 and B29. Diabetologia. 1981 Feb;20(2):94–101. doi: 10.1007/BF00262008. [DOI] [PubMed] [Google Scholar]
- Unger R. H. The Berson memorial lecture. Insulin-glucagon relationships in the defense against hypoglycemia. Diabetes. 1983 Jun;32(6):575–583. doi: 10.2337/diab.32.6.575. [DOI] [PubMed] [Google Scholar]
- Vranic M., Wrenshall G. A. Matched rates of insulin infusion and secretion and concurrent tracer-determined rates of glucose appearance and disappearance in fasting dogs. Can J Physiol Pharmacol. 1968 May;46(3):383–390. doi: 10.1139/y68-058. [DOI] [PubMed] [Google Scholar]
- Zeuzem S., Taylor R., Agius L., Albisser A. M., Alberti K. G. Differential binding of sulphated insulin to adipocytes and hepatocytes. Diabetologia. 1984 Aug;27(2):184–188. doi: 10.1007/BF00273803. [DOI] [PubMed] [Google Scholar]
