Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Dec;76(6):2259–2264. doi: 10.1172/JCI112235

Loss of high affinity cardiac beta adrenergic receptors in dogs with heart failure.

D E Vatner, S F Vatner, A M Fujii, C J Homcy
PMCID: PMC424349  PMID: 3001147

Abstract

We studied the alterations in myocardial beta-adrenergic receptor-adenylate cyclase activity and muscarinic receptor density in a canine model of left ventricular (LV) failure. LV failure was characterized by a doubling of LV weight/body weight ratio (3.3 +/- 0.1 to 6.9 +/- 0.4 g/kg) and an elevation of LV end-diastolic pressure, 32 +/- 4.5 mmHg, compared with 7.7 +/- 0.6 mmHg in normal dogs. Despite a 44% increase in receptor density as measured by antagonist binding studies with [3H]dihydroalprenolol, there was a twofold decrease in receptor affinity, i.e., an increase in the dissociation constant (Kd) (5.6 +/- 0.7 to 12 +/- 1.6 nM) in heart failure. Agonist displacement of [3H]dihydroalprenolol binding with isoproterenol in the presence and absence of 5'-guanylylimidodiphosphate [Gpp(NH)p] demonstrated a striking loss of high affinity binding sites in heart failure (51 +/- 16 to 11 +/- 5%). Beta-Adrenergic receptor-mediated stimulation of adenylate cyclase and maximal stimulation with Gpp(NH)p or sodium fluoride was reduced in heart failure. There was a concomitant marked, P less than 0.01, reduction in muscarinic receptor density (242 +/- 19 vs. 111 +/- 20 fmol/mg). Thus, while muscarinic receptor density fell, beta-adrenergic receptor density actually increased in LV failure. However, a larger portion of the beta-adrenergic receptors are not functionally coupled to the GTP-stimulatory protein (Ns), as evidenced by a decrease in the fraction of receptors that bind agonist with high affinity.

Full text

PDF
2259

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982 Jul 22;307(4):205–211. doi: 10.1056/NEJM198207223070401. [DOI] [PubMed] [Google Scholar]
  2. CHIDSEY C. A., BRAUNWALD E., MORROW A. G. CATECHOLAMINE EXCRETION AND CARDIAC STORES OF NOREPINEPHRINE IN CONGESTIVE HEART FAILURE. Am J Med. 1965 Sep;39:442–451. doi: 10.1016/0002-9343(65)90211-1. [DOI] [PubMed] [Google Scholar]
  3. Davies A. O., De Lean A., Lefkowitz R. J. Myocardial beta-adrenergic receptors from adrenalectomized rats: impaired formation of high-affinity agonist-receptor complexes. Endocrinology. 1981 Feb;108(2):720–722. doi: 10.1210/endo-108-2-720. [DOI] [PubMed] [Google Scholar]
  4. De Lean A., Stadel J. M., Lefkowitz R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem. 1980 Aug 10;255(15):7108–7117. [PubMed] [Google Scholar]
  5. Eckberg D. L., Drabinsky M., Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med. 1971 Oct 14;285(16):877–883. doi: 10.1056/NEJM197110142851602. [DOI] [PubMed] [Google Scholar]
  6. Fields J. Z., Roeske W. R., Morkin E., Yamamura H. I. Cardiac muscarinic cholinergic receptors. Biochemical identification and characterization. J Biol Chem. 1978 May 10;253(9):3251–3258. [PubMed] [Google Scholar]
  7. Fox A. C., Reed G. E. Changes in lactate dehydrogenase composition of hearts with right ventricular hypertrophy. Am J Physiol. 1969 May;216(5):1026–1033. doi: 10.1152/ajplegacy.1969.216.5.1026. [DOI] [PubMed] [Google Scholar]
  8. Francis G. S., Goldsmith S. R., Cohn J. N. Relationship of exercise capacity to resting left ventricular performance and basal plasma norepinephrine levels in patients with congestive heart failure. Am Heart J. 1982 Oct;104(4 Pt 1):725–731. doi: 10.1016/0002-8703(82)90003-5. [DOI] [PubMed] [Google Scholar]
  9. Gertler M. M., Saluste E., Spencer F. Biochemical analyses of human papillary muscles and guinea pig ventricles in failure. Proc Soc Exp Biol Med. 1970 Dec;135(3):817–824. doi: 10.3181/00379727-135-35151. [DOI] [PubMed] [Google Scholar]
  10. Harden T. K. Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev. 1983 Mar;35(1):5–32. [PubMed] [Google Scholar]
  11. Heinsimer J. A., Davies A. O., Downs R. W., Levine M. A., Spiegel A. M., Drezner M. K., De Lean A., Wreggett K. A., Caron M. G., Lefkowitz R. J. Impaired formation of beta-adrenergic receptor-nucleotide regulatory protein complexes in pseudohypoparathyroidism. J Clin Invest. 1984 May;73(5):1335–1343. doi: 10.1172/JCI111336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Higgins C. B., Vatner S. F., Eckberg D. L., Braunwald E. Alterations in the baroreceptor reflex in conscious dogs with heart failure. J Clin Invest. 1972 Apr;51(4):715–724. doi: 10.1172/JCI106865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karliner J. S., Barnes P., Brown M., Dollery C. Chronic heart failure in the guinea pig increases cardiac alpha 1- and beta-adrenoceptors. Eur J Pharmacol. 1980 Oct 3;67(1):115–118. doi: 10.1016/0014-2999(80)90017-5. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lompre A. M., Schwartz K., d'Albis A., Lacombe G., Van Thiem N., Swynghedauw B. Myosin isoenzyme redistribution in chronic heart overload. Nature. 1979 Nov 1;282(5734):105–107. doi: 10.1038/282105a0. [DOI] [PubMed] [Google Scholar]
  16. Manalan A. S., Besch H. R., Jr, Watanabe A. M. Characterization of [3H](+/-)carazolol binding to beta-adrenergic receptors. Application to study of beta-adrenergic receptor subtypes in canine ventricular myocardium and lung. Circ Res. 1981 Aug;49(2):326–336. doi: 10.1161/01.res.49.2.326. [DOI] [PubMed] [Google Scholar]
  17. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  18. Peuler J. D., Johnson G. A. Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci. 1977 Sep 1;21(5):625–636. doi: 10.1016/0024-3205(77)90070-4. [DOI] [PubMed] [Google Scholar]
  19. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  20. Spann J. F., Jr, Chidsey C. A., Pool P. E., Braunwald E. Mechanism of norepinephrine depletion in experimental heart failure produced by aortic constriction in the guinea pig. Circ Res. 1965 Oct;17(4):312–321. doi: 10.1161/01.res.17.4.312. [DOI] [PubMed] [Google Scholar]
  21. Stiles G. L., Caron M. G., Lefkowitz R. J. Beta-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev. 1984 Apr;64(2):661–743. doi: 10.1152/physrev.1984.64.2.661. [DOI] [PubMed] [Google Scholar]
  22. Stiles G. L., Stadel J. M., De Lean A., Lefkowitz R. J. Hypothyroidism modulates beta adrenergic receptor adenylate cyclase interactions in rat reticulocytes. J Clin Invest. 1981 Dec;68(6):1450–1455. doi: 10.1172/JCI110397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vatner D. E., Homcy C. J., Sit S. P., Manders W. T., Vatner S. F. Effects of pressure overload, left ventricular hypertrophy on beta-adrenergic receptors, and responsiveness to catecholamines. J Clin Invest. 1984 May;73(5):1473–1482. doi: 10.1172/JCI111351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vatner D. E., Lavallee M., Amano J., Finizola A., Homcy C. J., Vatner S. F. Mechanisms of supersensitivity to sympathomimetic amines in the chronically denervated heart of the conscious dog. Circ Res. 1985 Jul;57(1):55–64. doi: 10.1161/01.res.57.1.55. [DOI] [PubMed] [Google Scholar]
  25. York J. W., Penney D. G., Weeks T. A., Stagno P. A. Lactate dehydrogenase changes following several cardiac hypertrophic stresses. J Appl Physiol. 1976 Jun;40(6):923–926. doi: 10.1152/jappl.1976.40.6.923. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES