Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Dec;76(6):2330–2337. doi: 10.1172/JCI112244

A unique elastase in human blood platelets.

H L James, Y T Wachtfogel, P L James, M Zimmerman, R W Colman, A B Cohen
PMCID: PMC424363  PMID: 2416778

Abstract

Previous investigations suggested that elastolytic activity found in platelets could be due to contamination by neutrophil elastase. In the present study, the lysate of blood platelets free of detectable neutrophils was examined for elastase-like activity using tertiary-butyloxycarbonyl (tBOC)-ala-ala-pro-ala-aminomethyl coumarin (I), tBOC-ala-ala-pro-val-aminomethyl coumarin (II), and succinyl-tri-ala-rho-nitroanilide (SAPNA), and for elastolytic activity using 3H-labeled dog and human lung elastins. The platelet lysate degraded I at a higher rate than II, while the reverse was true of neutrophil elastase. The rate of degradation of I, II, and SAPNA by the lysate increased with reaction time up to 20 min. The rate of I, II, and SAPNA degradation by the lysate was decreased by the presence of 0.5 M NaCl, whereas NaCl greatly potentiated their degradation by neutrophil elastase. Plasma alpha 2-macroglobulin inhibited elastolysis by the platelet lysate, whereas plasma alpha 1-antitrypsin did not. The lysate activity was inhibited by diisopropyl fluorophosphate, phenylmethylsulfonyl fluoride, elastatinal, Trasylol, and furoyl-saccharin. The optimum pH for platelet lysate activity was 8.5-9.0, as in other studies using elastin as substrate. The pH 4.5 eluate obtained after incubation of the lysate with dog lung elastin at neutral pH exhibited the same catalytic properties as the activity in the lysate. The different substrate and inhibitor specificities and the failure of IgG specific for neutrophil elastase to remove elastase-like and elastolytic activities from the lysate indicate that a unique elastase occurs in platelets.

Full text

PDF
2330

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagdasarian A., Colman R. W. Subcellular localization and purification of platelet alpha1-antitrypsin. Blood. 1978 Jan;51(1):139–156. [PubMed] [Google Scholar]
  2. Barrett A. J., Starkey P. M. The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochem J. 1973 Aug;133(4):709–724. doi: 10.1042/bj1330709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baugh R. J., Travis J. Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry. 1976 Feb 24;15(4):836–841. doi: 10.1021/bi00649a017. [DOI] [PubMed] [Google Scholar]
  4. Bielefeld D. R., Senior R. M., Yu S. Y. A new method for determination of elastolytic activity using (14C) labeled elastin and its application to leukocytic elastase. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1553–1559. doi: 10.1016/0006-291x(75)90203-x. [DOI] [PubMed] [Google Scholar]
  5. Bieth J., Spiess B., Wermuth C. G. The synthesis and analytical use of a highly sensitive and convenient substrate of elastase. Biochem Med. 1974 Dec;11(4):350–357. doi: 10.1016/0006-2944(74)90134-3. [DOI] [PubMed] [Google Scholar]
  6. Castillo M. J., Nakajima K., Zimmerman M., Powers J. C. Sensitive substrates for human leukocyte and porcine pancreatic elastase: a study of the merits of various chromophoric and fluorogenic leaving groups in assays for serine proteases. Anal Biochem. 1979 Oct 15;99(1):53–64. doi: 10.1016/0003-2697(79)90043-5. [DOI] [PubMed] [Google Scholar]
  7. Holmsen H. Biochemistry of the platelet release reaction. Ciba Found Symp. 1975;35:175–205. doi: 10.1002/9780470720172.ch9. [DOI] [PubMed] [Google Scholar]
  8. James H. L., Cohen A. B. Mechanism of inhibition of porcine elastase by human alpha-1-antitrypsin. J Clin Invest. 1978 Dec;62(6):1344–1353. doi: 10.1172/JCI109255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones J. M., Creeth J. M., Kekwick R. A. Thio reduction of human 2 -macroglobulin. The subunit structure. Biochem J. 1972 Mar;127(1):187–197. doi: 10.1042/bj1270187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Legrand Y., Caen J. P., Robert L., Wautier J. L. Platelet elastase and leukocyte elastase are two different entities. Thromb Haemost. 1977 Jun 30;37(3):580–582. [PubMed] [Google Scholar]
  11. Legrand Y., Pignaud G., Caen J. P. Purification of platelet proteases: activation of proelastase by a trypsin-like enzyme. FEBS Lett. 1977 Apr 15;76(2):294–298. doi: 10.1016/0014-5793(77)80171-3. [DOI] [PubMed] [Google Scholar]
  12. Legrand Y., Robert B., Szigeti M., Pignaud G., Caen J., Robert L. Etudes sur une protéase élastinolytique des plaquettes anguines humaines. Atherosclerosis. 1970 Nov-Dec;12(3):451–465. doi: 10.1016/0021-9150(70)90049-3. [DOI] [PubMed] [Google Scholar]
  13. Lively M. O., Bush G. A., Mathur B. P., Moran T. F., Powers J. C. Tritium labeling of thermolysin, elastase, and ribonuclease by exposure to tritium gas at low pressure. Arch Biochem Biophys. 1980 Oct 15;204(2):589–599. doi: 10.1016/0003-9861(80)90071-5. [DOI] [PubMed] [Google Scholar]
  14. Lo T. N., Cohen A. B., James H. L. The interaction of alpha-1-antitrypsin with soluble and sepharose-bound elastase. Biochim Biophys Acta. 1976 Dec 22;453(2):345–356. [PubMed] [Google Scholar]
  15. MOLNAR J., LORAND L. Studies on apyrases. Arch Biochem Biophys. 1961 May;93:353–363. doi: 10.1016/0003-9861(61)90278-8. [DOI] [PubMed] [Google Scholar]
  16. March S. C., Parikh I., Cuatrecasas P. A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem. 1974 Jul;60(1):149–152. doi: 10.1016/0003-2697(74)90139-0. [DOI] [PubMed] [Google Scholar]
  17. Mustard J. F., Perry D. W., Ardlie N. G., Packham M. A. Preparation of suspensions of washed platelets from humans. Br J Haematol. 1972 Feb;22(2):193–204. doi: 10.1111/j.1365-2141.1972.tb08800.x. [DOI] [PubMed] [Google Scholar]
  18. Ohlsson K., Olsson I. The neutral proteases of human granulocytes. Isolation and partial characterization of granulocyte elastases. Eur J Biochem. 1974 Mar 1;42(2):519–527. doi: 10.1111/j.1432-1033.1974.tb03367.x. [DOI] [PubMed] [Google Scholar]
  19. Robert B., Legrand Y., Pignaud G., Caen J., Robert L. Activité élastinolytique associée aux plaquettes sanguines. Pathol Biol (Paris) 1969 Jun-Jul;17(11):615–622. [PubMed] [Google Scholar]
  20. Robert B., Szigeti M., Robert L., Legrand Y., Pignaud G., Caen J. Release of elastolytic activity from blood platelets. Nature. 1970 Sep 19;227(5264):1248–1249. doi: 10.1038/2271248a0. [DOI] [PubMed] [Google Scholar]
  21. SCHWERT G. W., TAKENAKA Y. A spectrophotometric determination of trypsin and chymotrypsin. Biochim Biophys Acta. 1955 Apr;16(4):570–575. doi: 10.1016/0006-3002(55)90280-8. [DOI] [PubMed] [Google Scholar]
  22. Schidlow D. V., Kueppers F. Trypsin binding activity of alpha 2-macroglobulin in cystic fibrosis and other lung diseases. Am Rev Respir Dis. 1980 Jan;121(1):31–37. doi: 10.1164/arrd.1980.121.1.31. [DOI] [PubMed] [Google Scholar]
  23. Starcher B. C., Galione M. J. Purification and comparison of elastins from different animal species. Anal Biochem. 1976 Aug;74(2):441–447. doi: 10.1016/0003-2697(76)90224-4. [DOI] [PubMed] [Google Scholar]
  24. Starkey P. M., Gordon J. L., Ehrlich H. P., Barrett A. J. Do platelets contain elastase? Thromb Haemost. 1978 Apr 30;39(2):542–543. [PubMed] [Google Scholar]
  25. Stone P. J., Crombie G., Franzblau C. The use of tritiated elastin for the determination of subnanogram amounts of elastase. Anal Biochem. 1977 Jun;80(2):572–577. doi: 10.1016/0003-2697(77)90680-7. [DOI] [PubMed] [Google Scholar]
  26. Swenson R. P., Howard J. B. Structural characterization of human alpha2-macroglobulin subunits. J Biol Chem. 1979 Jun 10;254(11):4452–4456. [PubMed] [Google Scholar]
  27. Umezawa H. Structures and activities of protease inhibitors of microbial origin. Methods Enzymol. 1976;45:678–695. doi: 10.1016/s0076-6879(76)45058-9. [DOI] [PubMed] [Google Scholar]
  28. Zimmerman M., Ashe B., Yurewicz E. C., Patel G. Sensitive assays for trypsin, elastase, and chymotrypsin using new fluorogenic substrates. Anal Biochem. 1977 Mar;78(1):47–51. doi: 10.1016/0003-2697(77)90006-9. [DOI] [PubMed] [Google Scholar]
  29. Zimmerman M., Morman H., Mulvey D., Jones H., Frankshun R., Ashe B. M. Inhibition of elastase and other serine proteases by heterocyclic acylating agents. J Biol Chem. 1980 Oct 25;255(20):9848–9851. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES