Abstract
We examined the relationships between the changes in bone mineral deficit in the radius, determined by single-energy photon absorptiometry at standard proximal and distal sites, and in the ilium, determined by bone histomorphometry, during the treatment of osteomalacia of diverse etiology in 28 patients. In the ilium, relative osteoid volume decreased by 75-80% in both cortical bone (from 6.0% to 1.5%) and trabecular bone (from 30.1% to 6.6%) during a mean treatment duration of 2 yr. There was also a significant fall in iliac cortical porosity from 10.3% to 7.8%. As a result, mineralized bone volume increased by 7.5% in cortical and by 40.1% in trabecular bone; the cortical and trabecular increments were correlated (r = 0.69, P less than 0.001). The properly weighted increase for the entire tissue sample was 18.6%. By contrast, there was no change in bone mineral at either radial site, although there was a 2% increase at both sites when allowance was made for age-related bone loss during treatment. The proximal and distal age-adjusted increments was correlated (r = 0.76, P less than 0.001), but there was no correlation between the changes in any photon absorptiometric and any histomorphometric index. In that iliac cortical bone turnover in normal subjects was 7.2%/yr, we estimated the rate of bone turnover to be less than 2%/yr at both proximal and distal radial sites, including any trabecular bone present at the distal site. Compared to appropriate control subjects, the bone mineral deficits fell during treatment from 19.2% to 17.1% at the proximal radius (greater than 95% cortical bone) and from 20.5% to 18.5% at the distal radius (greater than 75% cortical bone). In the ilium the deficits, assuming attainment of normal values for osteoid volume and cortical porosity, fell from 41.7% to 36.1% in cortical and from 31.5% to 6.3% in trabecular bone, the properly weighted combined deficit falling from 38.6% to 27.7%. The irreversible iliac cortical deficit was entirely due to cortical thinning because of increased net endosteal resorption; the resultant expansion of the marrow cavity offset the modest loss of fractional trabecular mineralized bone. We conclude: in osteomalacia there is a large irreversible and a small reversible bone mineral deficit at both proximal and distal radial sites, in similar proportion to the iliac cortex but of smaller magnitude; the anatomic basis of the irreversible bone mineral deficit at all three sites that persists despite correction of the mineralization defect by appropriate treatment is thinning of cortical bone, most likely owing to prolonged secondary hyperparathyroidism; (c) there is no evidence that the proportion of trabecular bone in the distal radius at any site proximal to the radioulnar joint has any relevance to the interpretation of measurements made at that site; (d) there are at least three functional subdivisions of trabecular bone depending on proximity to hematopoietic marrow, fatty marrow, or synovium; and (e) single photon absorptiometry of the radius is an excellent method for measuring cortical bone mass in the appendicular skeleton, but is of little value for the assessment of changes in trabecular bone status.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adinoff A. D., Hollister J. R. Steroid-induced fractures and bone loss in patients with asthma. N Engl J Med. 1983 Aug 4;309(5):265–268. doi: 10.1056/NEJM198308043090502. [DOI] [PubMed] [Google Scholar]
- Awbrey B. J., Jacobson P. C., Grubb S. A., McCartney W. H., Vincent L. M., Talmage R. V. Bone density in women: a modified procedure for measurement of distal radial density. J Orthop Res. 1984;2(4):314–321. doi: 10.1002/jor.1100020402. [DOI] [PubMed] [Google Scholar]
- Baylink D. J. Glucocorticoid-induced osteoporosis. N Engl J Med. 1983 Aug 4;309(5):306–308. doi: 10.1056/NEJM198308043090509. [DOI] [PubMed] [Google Scholar]
- Cann C. E., Genant H. K., Kolb F. O., Ettinger B. Quantitative computed tomography for prediction of vertebral fracture risk. Bone. 1985;6(1):1–7. doi: 10.1016/8756-3282(85)90399-0. [DOI] [PubMed] [Google Scholar]
- Christensen J. B., Adams J. P., Cho K. O., Miller L. A study of the interosseous distance between the radius and ulna during rotation of the forearm. Anat Rec. 1968 Feb;160(2):261–271. doi: 10.1002/ar.1091600212. [DOI] [PubMed] [Google Scholar]
- Christiansen C., Rodbro P., Lund M. Incidence of anticonvulsant osteomalacia and effect of vitamin D: controlled therapeutic trial. Br Med J. 1973 Dec 22;4(5894):695–701. doi: 10.1136/bmj.4.5894.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christiansen C., Rödbro P., Jensen H. Bone mineral content in the forearm measured by photon absorptiometry. Principles and reliability. Scand J Clin Lab Invest. 1975 Jul;35(4):323–330. [PubMed] [Google Scholar]
- Christiansen C., Rödbro P. Long-term reproducibility of bone mineral content measurements. Scand J Clin Lab Invest. 1977 Jun;37(4):321–323. doi: 10.3109/00365517709092636. [DOI] [PubMed] [Google Scholar]
- Dykman T. R., Gluck O. S., Murphy W. A., Hahn T. J., Hahn B. H. Evaluation of factors associated with glucocorticoid-induced osteopenia in patients with rheumatic diseases. Arthritis Rheum. 1985 Apr;28(4):361–368. doi: 10.1002/art.1780280402. [DOI] [PubMed] [Google Scholar]
- Dykman T. R., Haralson K. M., Gluck O. S., Murphy W. A., Teitelbaum S. L., Hahn T. J., Hahn B. H. Effect of oral 1,25-dihydroxyvitamin D and calcium on glucocorticoid-induced osteopenia in patients with rheumatic diseases. Arthritis Rheum. 1984 Dec;27(12):1336–1343. doi: 10.1002/art.1780271203. [DOI] [PubMed] [Google Scholar]
- Goldstein H. A. Bone scintigraphy. Orthop Clin North Am. 1983 Jan;14(1):243–256. [PubMed] [Google Scholar]
- Hahn T. J., Boisseau V. C., Avioli L. V. Effect of chronic corticosteroid administration on diaphyseal and metaphyseal bone mass. J Clin Endocrinol Metab. 1974 Aug;39(2):274–282. doi: 10.1210/jcem-39-2-274. [DOI] [PubMed] [Google Scholar]
- Hahn T. J., Halstead L. R., Teitelbaum S. L., Hahn B. H. Altered mineral metabolism in glucocorticoid-induced osteopenia. Effect of 25-hydroxyvitamin D administration. J Clin Invest. 1979 Aug;64(2):655–665. doi: 10.1172/JCI109506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horsman A., Leach A. E. The estimation of the cross-sectional area of the ulna and radius. Am J Phys Anthropol. 1974 Mar;40(2):173–185. doi: 10.1002/ajpa.1330400204. [DOI] [PubMed] [Google Scholar]
- Jensen H., Christiansen C., Lindbjerg I. F., Munck O. The mineral content in bone. Measured by means of 27.5 keV radiation from 125I. Acta Radiol Suppl. 1972;313:214–220. [PubMed] [Google Scholar]
- Jensen P. S., Orphanoudakis S. C., Rauschkolb E. N., Baron R., Lang R., Rasmussen H. Assessment of bone mass in the radius by computed tomography. AJR Am J Roentgenol. 1980 Feb;134(2):285–292. doi: 10.2214/ajr.134.2.285. [DOI] [PubMed] [Google Scholar]
- Keshawarz N. M., Recker R. R. Expansion of the medullary cavity at the expense of cortex in postmenopausal osteoporosis. Metab Bone Dis Relat Res. 1984;5(5):223–228. doi: 10.1016/0221-8747(84)90063-8. [DOI] [PubMed] [Google Scholar]
- Laval-Jeantet A. M., Bergot C., Carroll R., Garcia-Schaefer F. Cortical bone senescence and mineral bone density of the humerus. Calcif Tissue Int. 1983 May;35(3):268–272. doi: 10.1007/BF02405044. [DOI] [PubMed] [Google Scholar]
- Manicourt D. H., Orloff S., Brauman J., Schoutens A. Bone mineral content of the radius: good correlations with physicochemical determinations in iliac crest trabecular bone of normal and osteoporotic subjects. Metabolism. 1981 Jan;30(1):57–62. doi: 10.1016/0026-0495(81)90219-5. [DOI] [PubMed] [Google Scholar]
- Mazess R. B., Cameron J. R. Direct readout of bone mineral content using radionuclide absorptiometry. Int J Appl Radiat Isot. 1972 Oct;23(10):471–479. doi: 10.1016/0020-708x(72)90040-3. [DOI] [PubMed] [Google Scholar]
- Mazess R. B., Peppler W. W., Chesney R. W., Lange T. A., Lindgren U., Smith E., Jr Does bone measurement on the radius indicate skeletal status? Concise communication. J Nucl Med. 1984 Mar;25(3):281–288. [PubMed] [Google Scholar]
- Mazess R. B., Witt R. Interlaboratory variation in a commercial bone mineral analyzer. AJR Am J Roentgenol. 1983 Oct;141(4):789–791. doi: 10.2214/ajr.141.4.789. [DOI] [PubMed] [Google Scholar]
- Meema H. E., Meema S. Compact bone mineral density of the normal human radius. Acta Radiol Oncol Radiat Phys Biol. 1978;17(4):342–352. doi: 10.3109/02841867809127938. [DOI] [PubMed] [Google Scholar]
- Parfitt A. M., Pødenphant J., Villanueva A. R., Frame B. Metabolic bone disease with and without osteomalacia after intestinal bypass surgery: a bone histomorphometric study. Bone. 1985;6(4):211–220. doi: 10.1016/8756-3282(85)90003-1. [DOI] [PubMed] [Google Scholar]
- Parfitt A. M. The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res. 1982;4(1):1–6. doi: 10.1016/0221-8747(82)90002-9. [DOI] [PubMed] [Google Scholar]
- Riggs B. L., Wahner H. W., Dunn W. L., Mazess R. B., Offord K. P., Melton L. J., 3rd Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest. 1981 Feb;67(2):328–335. doi: 10.1172/JCI110039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rüegsegger P., Anliker M., Dambacher M. Quantification of trabecular bone with low dose computed tomography. J Comput Assist Tomogr. 1981 Jun;5(3):384–390. doi: 10.1097/00004728-198106000-00014. [DOI] [PubMed] [Google Scholar]
- Schlenker R. A., Kotek T. J. Effect of arm orientation on bone mineral mass and bone width measured using the Cameron-Sorenson technique. Med Phys. 1979 Mar-Apr;6(2):105–109. doi: 10.1118/1.594539. [DOI] [PubMed] [Google Scholar]
- Schlenker R. A., VonSeggen W. W. The distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implications for in vivo bone mass measurements. Calcif Tissue Res. 1976 Apr 13;20(1):41–52. doi: 10.1007/BF02546396. [DOI] [PubMed] [Google Scholar]
- Seeman E., Wahner H. W., Offord K. P., Kumar R., Johnson W. J., Riggs B. L. Differential effects of endocrine dysfunction on the axial and the appendicular skeleton. J Clin Invest. 1982 Jun;69(6):1302–1309. doi: 10.1172/JCI110570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith D. M., Johnston C. C., Jr, Yu P. L. In vivo measurement of bone mass. Its use in demineralized states such as osteoporosis. JAMA. 1972 Jan 17;219(3):325–329. [PubMed] [Google Scholar]
- Thompson D. D. Age changes in bone mineralization, cortical thickness, and haversian canal area. Calcif Tissue Int. 1980;31(1):5–11. doi: 10.1007/BF02407161. [DOI] [PubMed] [Google Scholar]
- Tjellesen L., Gotfredsen A., Christiansen C. Different actions of vitamin D2 and D3 on bone metabolism in patients treated with phenobarbitone/phenytoin. Calcif Tissue Int. 1985 May;37(3):218–222. doi: 10.1007/BF02554866. [DOI] [PubMed] [Google Scholar]
- Wahner H. W., Dunn W. L., Riggs B. L. Assessment of bone mineral. Part 2. J Nucl Med. 1984 Nov;25(11):1241–1253. [PubMed] [Google Scholar]
- Wahner H. W., Riggs B. L., Beabout J. W. Diagnosis of osteoporosis: usefulness of photon absorptiometry at the radius. J Nucl Med. 1977 May;18(5):432–437. [PubMed] [Google Scholar]
- Wronski T. J., Smith J. M., Jee W. S. The microdistribution and retention of injected 239Pu on trabecular bone surfaces of the beagle: implications for the induction of osteosarcoma. Radiat Res. 1980 Jul;83(1):74–89. [PubMed] [Google Scholar]
- Wu K., Jett S., Frost H. M. Bone resorption rates in rib in physiological, senile, and postmenopausal osteoporoses. J Lab Clin Med. 1967 May;69(5):810–818. [PubMed] [Google Scholar]


