Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 May;79(5):1473–1478. doi: 10.1172/JCI112976

Relation between geometric dimensions of coronary artery stenoses and myocardial perfusion reserve in man.

R A Goldstein, R L Kirkeeide, L L Demer, M Merhige, A Nishikawa, R W Smalling, N A Mullani, K L Gould
PMCID: PMC424422  PMID: 3494749

Abstract

To determine the relation between stenosis anatomy and perfusion in man, 31 patients had quantitative coronary arteriography and positron imaging (PET) with Rb-82 or N-13 ammonia at rest and after dipyridamole-handgrip stress. 10 patients were also studied after angioplasty (total stenoses = 41). Percent narrowing and absolute cross-sectional luminal area were related through a quadratic function to myocardial perfusion reserve determined with PET. Arteriographically determined coronary flow reserve was linearly related to relative myocardial perfusion reserve as expected, based on the derivation of equations for stenosis flow reserve. All of the correlations had considerable scatter, indicating that no single measurement derived by coronary arteriography was a good indicator of perfusion reserve by PET in individual patients. This study provides the relation between all anatomic dimensions of coronary artery stenoses and myocardial perfusion reserve in man, and suggests that PET indicates the functional significance of coronary artery stenoses for clinical purposes.

Full text

PDF
1473

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Goldstein R. A. Kinetics of rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chested dogs. J Clin Invest. 1985 Apr;75(4):1131–1137. doi: 10.1172/JCI111807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Goldstein R. A., Mullani N. A., Marani S. K., Fisher D. J., Gould K. L., O'Brien H. A., Jr Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacologic interventions. J Nucl Med. 1983 Oct;24(10):907–915. [PubMed] [Google Scholar]
  3. Gould K. L., Goldstein R. A., Mullani N. A., Kirkeeide R. L., Wong W. H., Tewson T. J., Berridge M. S., Bolomey L. A., Hartz R. K., Smalling R. W. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol. 1986 Apr;7(4):775–789. doi: 10.1016/s0735-1097(86)80336-9. [DOI] [PubMed] [Google Scholar]
  4. Gould K. L., Kelley K. O., Bolson E. L. Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation. 1982 Nov;66(5):930–937. doi: 10.1161/01.cir.66.5.930. [DOI] [PubMed] [Google Scholar]
  5. Gould K. L., Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974 Jul;34(1):48–55. doi: 10.1016/0002-9149(74)90092-7. [DOI] [PubMed] [Google Scholar]
  6. Gould K. L., Lipscomb K., Hamilton G. W. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974 Jan;33(1):87–94. doi: 10.1016/0002-9149(74)90743-7. [DOI] [PubMed] [Google Scholar]
  7. Gould K. L. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. I. Physiologic basis and experimental validation. Am J Cardiol. 1978 Feb;41(2):267–278. doi: 10.1016/0002-9149(78)90165-0. [DOI] [PubMed] [Google Scholar]
  8. Harrison D. G., White C. W., Hiratzka L. F., Doty D. B., Barnes D. H., Eastham C. L., Marcus M. L. The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation. 1984 Jun;69(6):1111–1119. doi: 10.1161/01.cir.69.6.1111. [DOI] [PubMed] [Google Scholar]
  9. Kirkeeide R. L., Gould K. L., Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol. 1986 Jan;7(1):103–113. doi: 10.1016/s0735-1097(86)80266-2. [DOI] [PubMed] [Google Scholar]
  10. Mullani N. A., Goldstein R. A., Gould K. L., Marani S. K., Fisher D. J., O'Brien H. A., Jr, Loberg M. D. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med. 1983 Oct;24(10):898–906. [PubMed] [Google Scholar]
  11. Mullani N. A. Myocardial perfusion with rubidium-82: III. Theory relating severity of coronary stenosis to perfusion deficit. J Nucl Med. 1984 Nov;25(11):1190–1196. [PubMed] [Google Scholar]
  12. Schelbert H. R., Phelps M. E., Hoffman E. J., Huang S. C., Selin C. E., Kuhl D. E. Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol. 1979 Feb;43(2):209–218. doi: 10.1016/s0002-9149(79)80006-5. [DOI] [PubMed] [Google Scholar]
  13. Seeley B. D., Young D. F. Effect of geometry on pressure losses across models of arterial stenoses. J Biomech. 1976;9(7):439–448. doi: 10.1016/0021-9290(76)90086-5. [DOI] [PubMed] [Google Scholar]
  14. Shah A., Schelbert H. R., Schwaiger M., Henze E., Hansen H., Selin C., Huang S. C. Measurement of regional myocardial blood flow with N-13 ammonia and positron-emission tomography in intact dogs. J Am Coll Cardiol. 1985 Jan;5(1):92–100. doi: 10.1016/s0735-1097(85)80089-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES