Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Jun;79(6):1674–1678. doi: 10.1172/JCI113006

Rapid clearance of a structural isomer of bilirubin during phototherapy.

J F Ennever, A T Costarino, R A Polin, W T Speck
PMCID: PMC424499  PMID: 3584465

Abstract

During phototherapy for neonatal jaundice, bilirubin is converted into a variety of photoproducts. Determination of the relative importance of these photoproducts to the elimination of bilirubin requires knowledge of their rates of excretion. We have measured the rate at which the structural isomer of bilirubin, lumirubin, disappeared from the serum of nine jaundiced premature infants after the cessation of phototherapy. In all patients studied, the decline in serum lumirubin could be approximated by a first-order rate equation with a half-life of 80 to 158 min. This rate of disappearance is much faster than that previously determined for the other major bilirubin photoproducts. In samples of bile aspirated from the duodenum of infants undergoing phototherapy, lumirubin was the principal bilirubin photoproduct found. These results indicate that formation and excretion of lumirubin is an important route for bilirubin elimination during phototherapy.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown A. K., Kim M. H., Wu P. Y., Bryla D. A. Efficacy of phototherapy in prevention and management of neonatal hyperbilirubinemia. Pediatrics. 1985 Feb;75(2 Pt 2):393–400. [PubMed] [Google Scholar]
  2. Callahan E. W., Jr, Thaler M. M., Karon M., Bauer K., Schmid R. Phototherapy of severe unconjugated hyperbilirubinemia: formation and removal of labeled bilirubin derivatives. Pediatrics. 1970 Dec;46(6):841–848. [PubMed] [Google Scholar]
  3. Costarino A. T., Ennever J. F., Baumgart S., Speck W. T., Paul M., Polin R. A. Bilirubin photoisomerization in premature neonates under low- and high-dose phototherapy. Pediatrics. 1985 Mar;75(3):519–522. [PubMed] [Google Scholar]
  4. Ennever J. F., Knox I., Denne S. C., Speck W. T. Phototherapy for neonatal jaundice: in vivo clearance of bilirubin photoproducts. Pediatr Res. 1985 Feb;19(2):205–208. doi: 10.1203/00006450-198502000-00012. [DOI] [PubMed] [Google Scholar]
  5. Ennever J. F., Knox I., Speck W. T. Differences in bilirubin isomer composition in infants treated with green and white light phototherapy. J Pediatr. 1986 Jul;109(1):119–122. doi: 10.1016/s0022-3476(86)80590-x. [DOI] [PubMed] [Google Scholar]
  6. Ennever J. F., Sobel M., McDonagh A. F., Speck W. T. Phototherapy for neonatal jaundice: in vitro comparison of light sources. Pediatr Res. 1984 Jul;18(7):667–670. doi: 10.1203/00006450-198407000-00021. [DOI] [PubMed] [Google Scholar]
  7. LESTER R., SCHMID R. Intestinal absorption of bile pigments. I. The enterohepatic circulation of bilirubin in the rat. J Clin Invest. 1963 May;42:736–746. doi: 10.1172/JCI104766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lamola A. A., Blumberg W. E., McClead R., Fanaroff A. Photoisomerized bilirubin in blood from infants receiving phototherapy. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1882–1886. doi: 10.1073/pnas.78.3.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lewis H. M., Campbell R. H., Hambleton G. Use or abuse of phototherapy for physiological jaundice of newborn infants. Lancet. 1982 Aug 21;2(8295):408–410. doi: 10.1016/s0140-6736(82)90440-8. [DOI] [PubMed] [Google Scholar]
  10. Lightner D. A., Linnane W. P., 3rd, Ahlfors C. E. Bilirubin photooxidation products in the urine of jaundiced neonates receiving phototherapy. Pediatr Res. 1984 Aug;18(8):696–700. doi: 10.1203/00006450-198408000-00003. [DOI] [PubMed] [Google Scholar]
  11. Lightner D. A., Wooldridge T. A., Rodgers S. L., Norris R. D. Action spectra for bilirubin photodisappearance. Experientia. 1980 Apr 15;36(4):380–382. doi: 10.1007/BF01975098. [DOI] [PubMed] [Google Scholar]
  12. Malhotra V., Ennever J. F. Determination of the relative detector response for unstable bilirubin photoproducts without isolation. J Chromatogr. 1986 Nov 28;383(1):153–157. doi: 10.1016/s0378-4347(00)83454-4. [DOI] [PubMed] [Google Scholar]
  13. McDonagh A. F., Palma L. A., Lauff J. J., Wu T. W. Origin of mammalian biliprotein and rearrangement of bilirubin glucuronides in vivo in the rat. J Clin Invest. 1984 Sep;74(3):763–770. doi: 10.1172/JCI111492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Onishi S., Isobe K., Itoh S., Kawade N., Sugiyama S. Demonstration of a geometric isomer of bilirubin-IX alpha in the serum of a hyperbilirubinaemic newborn infant and the mechanism of jaundice phototherapy. Biochem J. 1980 Sep 15;190(3):533–536. doi: 10.1042/bj1900533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Onishi S., Isobe K., Itoh S., Manabe M., Sasaki K., Fukuzaki R., Yamakawa T. Metabolism of bilirubin and its photoisomers in newborn infants during phototherapy. J Biochem. 1986 Sep;100(3):789–795. doi: 10.1093/oxfordjournals.jbchem.a121772. [DOI] [PubMed] [Google Scholar]
  16. Stoll M. S., Zenone E. A., Ostrow J. D., Zarembo J. E. Preparation and properties of bilirubin photoisomers. Biochem J. 1979 Oct 1;183(1):139–146. doi: 10.1042/bj1830139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tan K. L. The nature of the dose-response relationship of phototherapy for neonatal hyperbilirubinemia. J Pediatr. 1977 Mar;90(3):448–452. doi: 10.1016/s0022-3476(77)80714-2. [DOI] [PubMed] [Google Scholar]
  18. Vecchi C., Donzelli G. P., Migliorini M. G., Sbrana G. Green light in phototherapy. Pediatr Res. 1983 Jun;17(6):461–463. doi: 10.1203/00006450-198306000-00006. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES