Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 Apr;77(4):1387–1390. doi: 10.1172/JCI112445

Cocaine increases natural killer cell activity.

C Van Dyke, A Stesin, R Jones, A Chuntharapai, W Seaman
PMCID: PMC424504  PMID: 2937807

Abstract

The administration of epinephrine to humans increases natural killer (NK) cell activity and numbers. If endogenous catecholamines regulate NK cells, then their activity should be increased by cocaine, an agent that potentiates endogenous catecholamines. We investigated the in vivo effect of cocaine on NK cell activity and on the distribution of lymphocyte subsets, including NK cells. Intravenous cocaine (0.6 mg/kg) produced a three- to fourfold increase in NK cell activity in peripheral blood. The increase was accompanied by a marked and selective increase in circulating NK cells, as identified by the Fc receptor (Leu-11). Normal saline and benzoylecgonine, a major metabolite of cocaine, had little effect on NK cell activity or on levels of Leu-11+ cells. Other lymphocyte subpopulations were not increased by cocaine. The time course of the alterations in NK cell numbers and activity paralleled plasma levels of cocaine. In vitro cocaine did not increase NK cell activity. Our results indicate that cocaine selectively alters the activity and distribution of the NK lymphocyte subset. Because cocaine increases the activity of endogenous catecholamines, these findings suggest that human NK cells are selectively regulated by the sympathetic nervous system.

Full text

PDF
1387

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abruzzo L. V., Rowley D. A. Homeostasis of the antibody response: immunoregulation by NK cells. Science. 1983 Nov 11;222(4624):581–585. doi: 10.1126/science.6685343. [DOI] [PubMed] [Google Scholar]
  2. Arai S., Yamamoto H., Itoh K., Kumagai K. Suppressive effect of human natural killer cells on pokeweed mitogen-induced B cell differentiation. J Immunol. 1983 Aug;131(2):651–657. [PubMed] [Google Scholar]
  3. Banister E. W., Griffiths J. Blood levels of adrenergic amines during exercise. J Appl Physiol. 1972 Nov;33(5):674–676. doi: 10.1152/jappl.1972.33.5.674. [DOI] [PubMed] [Google Scholar]
  4. Bishop G. A., Glorioso J. C., Schwartz S. A. Relationship between expression of herpes simplex virus glycoproteins and susceptibility of target cells to human natural killer activity. J Exp Med. 1983 May 1;157(5):1544–1561. doi: 10.1084/jem.157.5.1544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brieva J. A., Targan S., Stevens R. H. NK and T cell subsets regulate antibody production by human in vivo antigen-induced lymphoblastoid B cells. J Immunol. 1984 Feb;132(2):611–615. [PubMed] [Google Scholar]
  6. Brodde O. E., Daul A., O'Hara N. Beta-adrenoceptor changes in human lymphocytes, induced by dynamic exercise. Naunyn Schmiedebergs Arch Pharmacol. 1984 Feb;325(2):190–192. doi: 10.1007/BF00506201. [DOI] [PubMed] [Google Scholar]
  7. Butler J., O'Brien M., O'Malley K., Kelly J. G. Relationship of beta-adrenoreceptor density to fitness in athletes. Nature. 1982 Jul 1;298(5869):60–62. doi: 10.1038/298060a0. [DOI] [PubMed] [Google Scholar]
  8. Ching C., Lopez C. Natural killing of herpes simplex virus type 1-infected target cells: normal human responses and influence of antiviral antibody. Infect Immun. 1979 Oct;26(1):49–56. doi: 10.1128/iai.26.1.49-56.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chiueh C. C., Kopin I. J. Centrally mediated release by cocaine of endogenous epinephrine and norepinephrine from the sympathoadrenal medullary system of unanesthetized rats. J Pharmacol Exp Ther. 1978 Apr;205(1):148–154. [PubMed] [Google Scholar]
  10. Crary B., Hauser S. L., Borysenko M., Kutz I., Hoban C., Ault K. A., Weiner H. L., Benson H. Epinephrine-induced changes in the distribution of lymphocyte subsets in peripheral blood of humans. J Immunol. 1983 Sep;131(3):1178–1181. [PubMed] [Google Scholar]
  11. Duwe A. K., Singhal S. K. The immunoregulatory role of bone marrow. II. Characterization of a suppressor cell inhibiting the in vitro antibody response. Cell Immunol. 1979 Mar 15;43(2):372–381. doi: 10.1016/0008-8749(79)90181-3. [DOI] [PubMed] [Google Scholar]
  12. Edwards A. J., Bacon T. H., Elms C. A., Verardi R., Felder M., Knight S. C. Changes in the populations of lymphoid cells in human peripheral blood following physical exercise. Clin Exp Immunol. 1984 Nov;58(2):420–427. [PMC free article] [PubMed] [Google Scholar]
  13. Gorelik E., Fogel M., Feldman M., Segal S. Differences in resistance of metastatic tumor cells and cells from local tumor growth to cytotoxicity of natural killer cells. J Natl Cancer Inst. 1979 Dec;63(6):1397–1404. [PubMed] [Google Scholar]
  14. Hanna N., Fidler I. J. Role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst. 1980 Oct;65(4):801–809. doi: 10.1093/jnci/65.4.801. [DOI] [PubMed] [Google Scholar]
  15. Herberman R. B., Bartram S., Haskill J. S., Nunn M., Holden H. T., West W. H. Fc receptors on mouse effector cells mediating natural cytotoxicity against tumor cells. J Immunol. 1977 Jul;119(1):322–326. [PubMed] [Google Scholar]
  16. Herberman R. B. Immunoregulation and natural killer cells. Mol Immunol. 1982 Oct;19(10):1313–1321. doi: 10.1016/0161-5890(82)90299-1. [DOI] [PubMed] [Google Scholar]
  17. Herberman R. B., Nunn M. E., Holden H. T., Lavrin D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer. 1975 Aug 15;16(2):230–239. doi: 10.1002/ijc.2910160205. [DOI] [PubMed] [Google Scholar]
  18. Jacob P., 3rd, Elias-Baker B. A., Jones R. T., Benowitz N. L. Determination of cocaine in plasma by automated gas chromatography. J Chromatogr. 1984 Mar 9;306:173–181. doi: 10.1016/s0378-4347(00)80880-4. [DOI] [PubMed] [Google Scholar]
  19. Katz P., Zaytoun A. M., Fauci A. S. Mechanisms of human cell-mediated cytotoxicity. I. Modulation of natural killer cell activity by cyclic nucleotides. J Immunol. 1982 Jul;129(1):287–296. [PubMed] [Google Scholar]
  20. Masucci M. G., Szigeti R., Klein E., Klein G., Gruest J., Montagnier L., Taira H., Hall A., Nagata S., Weissmann C. Effect of interferon-alpha 1 from E. coli on some cell functions. Science. 1980 Sep 19;209(4463):1431–1435. doi: 10.1126/science.6158096. [DOI] [PubMed] [Google Scholar]
  21. Nabel G., Allard W. J., Cantor H. A cloned cell line mediating natural killer cell function inhibits immunoglobulin secretion. J Exp Med. 1982 Aug 1;156(2):658–663. doi: 10.1084/jem.156.2.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ortaldo J. R., Herberman R. B., Harvey C., Osheroff P., Pan Y. C., Kelder B., Pestka S. A species of human alpha interferon that lacks the ability to boost human natural killer activity. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4926–4929. doi: 10.1073/pnas.81.15.4926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Riccardi C., Santoni A., Barlozzari T., Puccetti P., Herberman R. B. In vivo natural reactivity of mice against tumor cells. Int J Cancer. 1980 Apr 15;25(4):475–486. doi: 10.1002/ijc.2910250409. [DOI] [PubMed] [Google Scholar]
  24. Rowbotham M. C., Jones R. T., Benowitz N. L., Jacob P., 3rd Trazodone-oral cocaine interactions. Arch Gen Psychiatry. 1984 Sep;41(9):895–899. doi: 10.1001/archpsyc.1984.01790200077010. [DOI] [PubMed] [Google Scholar]
  25. Seaman W. E., Gindhart T. D., Blackman M. A., Dalal B., Talal N., Werb Z. Suppression of natural killing in vitro by monocytes and polymorphonuclear leukocytes: requirement for reactive metabolites of oxygen. J Clin Invest. 1982 Apr;69(4):876–888. doi: 10.1172/JCI110527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sheil J. M., Gallimore P. H., Zimmer S. G., Sopori M. L. Susceptibility of Adenovirus 2-transformed rat cell lines to natural killer (NK) cells: direct correlation between NK resistance and in vivo tumorigenesis. J Immunol. 1984 Mar;132(3):1578–1582. [PubMed] [Google Scholar]
  27. Svedersky L. P., Shepard H. M., Spencer S. A., Shalaby M. R., Palladino M. A. Augmentation of human natural cell-mediated cytotoxicity by recombinant human interleukin 2. J Immunol. 1984 Aug;133(2):714–718. [PubMed] [Google Scholar]
  28. Takagi S., Kitagawa S., Oshimi K., Takaku F., Miura Y. Effect of local anaesthetics on human natural killer cell activity. Clin Exp Immunol. 1983 Aug;53(2):477–481. [PMC free article] [PubMed] [Google Scholar]
  29. Talmadge J. E., Meyers K. M., Prieur D. J., Starkey J. R. Role of NK cells in tumour growth and metastasis in beige mice. Nature. 1980 Apr 17;284(5757):622–624. doi: 10.1038/284622a0. [DOI] [PubMed] [Google Scholar]
  30. Targan S., Brieva J., Newman W., Stevens R. Is the NK lytic process involved in the mechanism of NK suppression of antibody-producing cells? J Immunol. 1985 Feb;134(2):666–669. [PubMed] [Google Scholar]
  31. Targan S., Britvan L., Dorey F. Activation of human NKCC by moderate exercise: increased frequency of NK cells with enhanced capability of effector--target lytic interactions. Clin Exp Immunol. 1981 Aug;45(2):352–360. [PMC free article] [PubMed] [Google Scholar]
  32. Tilden A. B., Abo T., Balch C. M. Suppressor cell function of human granular lymphocytes identified by the HNK-1 (Leu 7) monoclonal antibody. J Immunol. 1983 Mar;130(3):1171–1175. [PubMed] [Google Scholar]
  33. Tønnesen E., Tønnesen J., Christensen N. J. Augmentation of cytotoxicity by natural killer (NK) cells after adrenaline administration in man. Acta Pathol Microbiol Immunol Scand C. 1984 Feb;92(1):81–83. [PubMed] [Google Scholar]
  34. Warner J. F., Dennert G. Effects of a cloned cell line with NK activity on bone marrow transplants, tumour development and metastasis in vivo. Nature. 1982 Nov 4;300(5887):31–34. doi: 10.1038/300031a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES