Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1987 Jun;79(6):1860–1867. doi: 10.1172/JCI113028

Metabolism of platelet-activating factor in isolated perfused rat lung.

P E Haroldsen, N F Voelkel, J E Henson, P M Henson, R C Murphy
PMCID: PMC424530  PMID: 3108322

Abstract

The administration of platelet-activating factor (PAF) into the airway system of the lung is known to cause profound effects, yet little is known about the metabolism of this active lipid mediator. 3H-Labeled PAF administered into the airway of isolated rat lungs was rapidly and extensively metabolized. The tissue retained 96% of the administered radiolabel while the perfusate contained 4%. Characterization of the tissue retained lipid indicated metabolism into lyso-PAF (3.3%), phosphatidylcholine (82.3%), neutral lipid (1.7%) and intact PAF (10.2%). Analysis of tissue phosphatidylcholine by mass spectrometric techniques revealed metabolism of PAF to 1-0-hexadecyl-2-arachidonoyl-GPC, which represented 20-23% of the administered radiolabeled hexadecyl-PAF. These findings support the hypothesis that a relationship between PAF and arachidonate metabolism exists at the intact organ level. Autoradiographic analysis of the cellular distribution of the radiolabeled PAF metabolites in the lung tissue indicated labeling of two cell types, the alveolar type II cell and the nonciliated bronchiolar epithelial cell (Clara cell).

Full text

PDF
1860

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Benveniste J., Tencé M., Varenne P., Bidault J., Boullet C., Polonsky J. Semi-synthèse et structure proposée du facteur activant les plaquettes (P.A.F.): PAF-acether, un alkyl ether analogue de la lysophosphatidylcholine. C R Seances Acad Sci D. 1979 Nov 26;289(14):1037–1040. [PubMed] [Google Scholar]
  3. Blank M. L., Cress E. A., Whittle T., Snyder F. In vivo metabolism of a new class of biologically active phospholipids: 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a platelet activating-hypotensive phospholipid. Life Sci. 1981 Aug 24;29(8):769–775. doi: 10.1016/0024-3205(81)90031-x. [DOI] [PubMed] [Google Scholar]
  4. Blank M. L., Spector A. A., Kaduce T. L., Lee T. C., Snyder F. Metabolism of platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) and 1-alkyl-2-acetyl-sn-glycerol by human endothelial cells. Biochim Biophys Acta. 1986 May 21;876(3):373–378. doi: 10.1016/0005-2760(86)90022-6. [DOI] [PubMed] [Google Scholar]
  5. Chilton F. H., 3rd, Murphy R. C. Fast atom bombardment analysis of arachidonic acid-containing phosphatidylcholine molecular species. Biomed Environ Mass Spectrom. 1986 Feb;13(2):71–76. doi: 10.1002/bms.1200130205. [DOI] [PubMed] [Google Scholar]
  6. Chilton F. H., O'Flaherty J. T., Ellis J. M., Swendsen C. L., Wykle R. L. Metabolic fate of platelet-activating factor in neutrophils. J Biol Chem. 1983 May 25;258(10):6357–6361. [PubMed] [Google Scholar]
  7. Chilton F. H., O'Flaherty J. T., Ellis J. M., Swendsen C. L., Wykle R. L. Selective acylation of lyso platelet activating factor by arachidonate in human neutrophils. J Biol Chem. 1983 Jun 25;258(12):7268–7271. [PubMed] [Google Scholar]
  8. Chung K. F., Aizawa H., Leikauf G. D., Ueki I. F., Evans T. W., Nadel J. A. Airway hyperresponsiveness induced by platelet-activating factor: role of thromboxane generation. J Pharmacol Exp Ther. 1986 Mar;236(3):580–584. [PubMed] [Google Scholar]
  9. Clay K. L., Murphy R. C., Andres J. L., Lynch J., Henson P. M. Structure elucidation of platelet activating factor derived from human neutrophils. Biochem Biophys Res Commun. 1984 Jun 29;121(3):815–825. doi: 10.1016/0006-291x(84)90751-4. [DOI] [PubMed] [Google Scholar]
  10. Cuss F. M., Dixon C. M., Barnes P. J. Effects of inhaled platelet activating factor on pulmonary function and bronchial responsiveness in man. Lancet. 1986 Jul 26;2(8500):189–192. doi: 10.1016/s0140-6736(86)92489-x. [DOI] [PubMed] [Google Scholar]
  11. Demopoulos C. A., Pinckard R. N., Hanahan D. J. Platelet-activating factor. Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators). J Biol Chem. 1979 Oct 10;254(19):9355–9358. [PubMed] [Google Scholar]
  12. Goerke J. Lung surfactant. Biochim Biophys Acta. 1974 Dec 16;344(3-4):241–261. doi: 10.1016/0304-4157(74)90009-4. [DOI] [PubMed] [Google Scholar]
  13. Halonen M., Palmer J. D., Lohman I. C., McManus L. M., Pinckard R. N. Differential effects of platelet depletion on the physiologic alterations of IgE anaphylaxis and acetyl glyceryl ether phosphorylcholine infusion in the rabbit. Am Rev Respir Dis. 1981 Oct;124(4):416–421. doi: 10.1164/arrd.1981.124.4.416. [DOI] [PubMed] [Google Scholar]
  14. Hamasaki Y., Mojarad M., Saga T., Tai H. H., Said S. I. Platelet-activating factor raises airway and vascular pressures and induces edema in lungs perfused with platelet-free solution. Am Rev Respir Dis. 1984 May;129(5):742–746. doi: 10.1164/arrd.1984.129.5.742. [DOI] [PubMed] [Google Scholar]
  15. Hanahan D. J. Platelet activating factor: a biologically active phosphoglyceride. Annu Rev Biochem. 1986;55:483–509. doi: 10.1146/annurev.bi.55.070186.002411. [DOI] [PubMed] [Google Scholar]
  16. Haroldsen P. E., Clay K. L., Murphy R. C. Quantitation of lyso-platelet activating factor molecular species from human neutrophils by mass spectrometry. J Lipid Res. 1987 Jan;28(1):42–49. [PubMed] [Google Scholar]
  17. Harper T. W., Westcott J. Y., Voelkel N., Murphy R. C. Metabolism of leukotrienes B4 and C4 in the isolated perfused rat lung. J Biol Chem. 1984 Dec 10;259(23):14437–14440. [PubMed] [Google Scholar]
  18. Hoffman D. R., Truong C. T., Johnston J. M. The role of platelet-activating factor in human fetal lung maturation. Am J Obstet Gynecol. 1986 Jul;155(1):70–75. doi: 10.1016/0002-9378(86)90081-5. [DOI] [PubMed] [Google Scholar]
  19. Kito M., Takamura H., Narita H., Urade R. A sensitive method for quantitative analysis of phospholipid molecular species by high-performance liquid chromatography. J Biochem. 1985 Aug;98(2):327–331. doi: 10.1093/oxfordjournals.jbchem.a135285. [DOI] [PubMed] [Google Scholar]
  20. Kramer R. M., Patton G. M., Pritzker C. R., Deykin D. Metabolism of platelet-activating factor in human platelets. Transacylase-mediated synthesis of 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. J Biol Chem. 1984 Nov 10;259(21):13316–13320. [PubMed] [Google Scholar]
  21. Lewis R. A., Austen K. F. Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature. 1981 Sep 10;293(5828):103–108. doi: 10.1038/293103a0. [DOI] [PubMed] [Google Scholar]
  22. Murphy R. C., Henson P. M. Mediator network. Ann Inst Pasteur Immunol. 1985 Sep-Oct;136D(2):219–221. doi: 10.1016/s0769-2625(85)80105-7. [DOI] [PubMed] [Google Scholar]
  23. Peck M. J., Piper P. J., Williams T. J. The effect of leukotrienes C4 and D4 on the microvasculature of guinea-pig skin. Prostaglandins. 1981 Feb;21(2):315–321. doi: 10.1016/0090-6980(81)90149-0. [DOI] [PubMed] [Google Scholar]
  24. Ramesha C. S., Pickett W. C. Measurement of sub-picogram quantities of platelet activating factor (AGEPC) by gas chromatography/negative ion chemical ionization mass spectrometry. Biomed Environ Mass Spectrom. 1986 Mar;13(3):107–111. doi: 10.1002/bms.1200130302. [DOI] [PubMed] [Google Scholar]
  25. Robinson M., Snyder F. Metabolism of platelet-activating factor by rat alveolar macrophages: lyso-PAF as an obligatory intermediate in the formation of alkylarachidonoyl glycerophosphocholine species. Biochim Biophys Acta. 1985 Oct 23;837(1):52–56. doi: 10.1016/0005-2760(85)90084-0. [DOI] [PubMed] [Google Scholar]
  26. Samuelsson B., Hammarström S., Murphy R. C., Borgeat P. Leukotrienes and slow reacting substance of anaphylaxis (SRS-A). Allergy. 1980 Jul;35(5):375–381. doi: 10.1111/j.1398-9995.1980.tb01782.x. [DOI] [PubMed] [Google Scholar]
  27. Tan E. L., Snyder F. Metabolism of platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) by capillary endothelial cells isolated from rat epididymal adipose tissue. Thromb Res. 1985 Jun 15;38(6):713–717. doi: 10.1016/0049-3848(85)90215-4. [DOI] [PubMed] [Google Scholar]
  28. Voelkel N. F., Chang S. W., Pfeffer K. D., Worthen S. G., McMurtry I. F., Henson P. M. PAF antagonists: different effects on platelets, neutrophils, guinea pig ileum and PAF-induced vasodilation in isolated rat lung. Prostaglandins. 1986 Sep;32(3):359–372. doi: 10.1016/0090-6980(86)90005-5. [DOI] [PubMed] [Google Scholar]
  29. Voelkel N. F., Gerber J. G., McMurtry I. F., Nies A. S., Reeves J. T. Release of vasodilator prostaglandin, PGI2, from isolated rat lung during vasoconstriction. Circ Res. 1981 Feb;48(2):207–213. doi: 10.1161/01.res.48.2.207. [DOI] [PubMed] [Google Scholar]
  30. Voelkel N. F., Worthen S., Reeves J. T., Henson P. M., Murphy R. C. Nonimmunological production of leukotrienes induced by platelet-activating factor. Science. 1982 Oct 15;218(4569):286–289. doi: 10.1126/science.7123233. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES