Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1986 May;77(5):1482–1486. doi: 10.1172/JCI112461

Protein-bound homocyst(e)ine. A possible risk factor for coronary artery disease.

S S Kang, P W Wong, H Y Cook, M Norusis, J V Messer
PMCID: PMC424549  PMID: 3700650

Abstract

The development of atherosclerotic changes and thromboembolism are common features in homocystinurics. Hence, we postulate a positive correlation between the level of homocyst(e)ine in the blood and the occurrence of coronary artery disease. Homocysteine is found either as free homocystine, cysteine-homocysteine mixed disulfide, or protein-bound homocyst(e)ine. In nonhomocystinuric subjects, most homocysteine molecules are detectable in the protein-bound form. Thus, protein-bound homocyst(e)ine in stored plasma which reflected total plasma homocyst(e)ine was determined in 241 patients with coronary artery disease (173 males and 68 females). The mean +/- SD total plasma homocyst(e)ine was 5.41 +/- 1.62 nmol/ml in male patients, 4.37 +/- 1.09 nmol/ml in male controls, 5.66 +/- 1.93 nmol/ml in female patients, and 4.16 +/- 1.62 nmol/ml in female controls. The differences between the patients with coronary artery disease and the controls were statistically significant (P less than 0.0005).

Full text

PDF
1482

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boers G. H., Smals A. G., Trijbels F. J., Fowler B., Bakkeren J. A., Schoonderwaldt H. C., Kleijer W. J., Kloppenborg P. W. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med. 1985 Sep 19;313(12):709–715. doi: 10.1056/NEJM198509193131201. [DOI] [PubMed] [Google Scholar]
  2. Boers G. H., Smals A. G., Trijbels F. J., Leermakers A. I., Kloppenborg P. W. Unique efficiency of methionine metabolism in premenopausal women may protect against vascular disease in the reproductive years. J Clin Invest. 1983 Dec;72(6):1971–1976. doi: 10.1172/JCI111161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dudman N. P., Wilcken D. E. Homocysteine thiolactone and experimental homocysteinemia. Biochem Med. 1982 Apr;27(2):244–253. doi: 10.1016/0006-2944(82)90027-8. [DOI] [PubMed] [Google Scholar]
  4. GIBSON J. B., CARSON N. A., NEILL D. W. PATHOLOGICAL FINDINGS IN HOMOCYSTINURIA. J Clin Pathol. 1964 Jul;17:427–437. doi: 10.1136/jcp.17.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Harker L. A., Ross R., Slichter S. J., Scott C. R. Homocystine-induced arteriosclerosis. The role of endothelial cell injury and platelet response in its genesis. J Clin Invest. 1976 Sep;58(3):731–741. doi: 10.1172/JCI108520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kang S. S., Wong P. W., Becker N. Protein-bound homocyst(e)ine in normal subjects and in patients with homocystinuria. Pediatr Res. 1979 Oct;13(10):1141–1143. doi: 10.1203/00006450-197910000-00012. [DOI] [PubMed] [Google Scholar]
  7. Kang S. S., Wong P. W., Bidani A., Milanez S. Plasma protein-bound homocyst(e)ine in patients requiring chronic haemodialysis. Clin Sci (Lond) 1983 Sep;65(3):335–336. doi: 10.1042/cs0650335. [DOI] [PubMed] [Google Scholar]
  8. Kang S. S., Wong P. W., Curley K. The effect of D-penicillamine on protein-bound homocyst(e)ine in homocystinurics. Pediatr Res. 1982 May;16(5):370–372. doi: 10.1203/00006450-198205000-00010. [DOI] [PubMed] [Google Scholar]
  9. McCully K. S. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969 Jul;56(1):111–128. [PMC free article] [PubMed] [Google Scholar]
  10. Mudd S. H., Havlik R., Levy H. L., McKusick V. A., Feinleib M. A study of cardiovascular risk in heterozygotes for homocystinuria. Am J Hum Genet. 1981 Nov;33(6):883–893. [PMC free article] [PubMed] [Google Scholar]
  11. Perry T. L., Hansen S. Technical pitfalls leading to errors in the quantitation of plasma amino acids. Clin Chim Acta. 1969 Jul;25(1):53–58. doi: 10.1016/0009-8981(69)90226-5. [DOI] [PubMed] [Google Scholar]
  12. Refsum H., Helland S., Ueland P. M. Radioenzymic determination of homocysteine in plasma and urine. Clin Chem. 1985 Apr;31(4):624–628. [PubMed] [Google Scholar]
  13. Sardharwalla I. B., Fowler B., Robins A. J., Komrower G. M. Detection of heterozygotes for homocystinuria. Study of sulphur-containing amino acids in plasma and urine after L-methionine loading. Arch Dis Child. 1974 Jul;49(7):553–559. doi: 10.1136/adc.49.7.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smolin L. A., Benevenga N. J. Accumulation of homocyst(e)ine in vitamin B-6 deficiency: a model for the study of cystathionine beta-synthase deficiency. J Nutr. 1982 Jul;112(7):1264–1272. doi: 10.1093/jn/112.7.1264. [DOI] [PubMed] [Google Scholar]
  15. Ueland P. M., Helland S., Broch O. J., Schanche J. S. Homocysteine in tissues of the mouse and rat. J Biol Chem. 1984 Feb 25;259(4):2360–2364. [PubMed] [Google Scholar]
  16. Wilcken D. E., Reddy S. G., Gupta V. J. Homocysteinemia, ischemic heart disease, and the carrier state for homocystinuria. Metabolism. 1983 Apr;32(4):363–370. doi: 10.1016/0026-0495(83)90045-8. [DOI] [PubMed] [Google Scholar]
  17. Wilcken D. E., Wilcken B. The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J Clin Invest. 1976 Apr;57(4):1079–1082. doi: 10.1172/JCI108350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES