Abstract
Infrarenal heterotopic cardiac isografts maintain structural and functional integrity. We have used this transplantation model to further explore the mechanisms of thyroid hormone-induced cardiac hypertrophy. Thyroid hormone administration, 1-thyroxine (T4) 10 micrograms/animal per d, led to a significant 30% increase in total heart weight and a 40% increase in the myosin content of the in situ heart when compared with control. In contrast, T4 treatment was without effect on the heart weight, protein content, rate of protein synthesis, or calculated myosin content of the heterotopic, nonworking heart. Heterotopic hearts demonstrated a significant decrease in the percentage of the V1 myosin isoenzyme from 95% to 61%. This shift occurred in euthyroid animals but was prevented by T4 treatment. These results suggest that thyroxine-induced cardiac hypertrophy is mediated indirectly via changes in cardiac work. Myosin isoenzyme expression can be altered by changes in work load but is still responsive to increased levels of thyroid hormone.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alpert N. R., Mulieri L. A., Litten R. Z. Functional significance of altered myosin adenosine triphosphatase activity in enlarged hearts. Am J Cardiol. 1979 Oct 22;44(5):946–953. doi: 10.1016/0002-9149(79)90227-3. [DOI] [PubMed] [Google Scholar]
- Cooper G., 4th, Kent R. L., Uboh C. E., Thompson E. W., Marino T. A. Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. J Clin Invest. 1985 May;75(5):1403–1414. doi: 10.1172/JCI111842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crie J. S., Wakeland J. R., Mayhew B. A., Wildenthal K. Direct anabolic effects of thyroid hormone on isolated mouse heart. Am J Physiol. 1983 Nov;245(5 Pt 1):C328–C333. doi: 10.1152/ajpcell.1983.245.5.C328. [DOI] [PubMed] [Google Scholar]
- Dillmann W. H., Barrieux A., Neeley W. E., Contreras P. Influence of thyroid hormone on the in vitro translational activity of specific mRNAs in the rat heart. J Biol Chem. 1983 Jun 25;258(12):7738–7745. [PubMed] [Google Scholar]
- Dillmann W. H. Diabetes mellitus induces changes in cardiac myosin of the rat. Diabetes. 1980 Jul;29(7):579–582. doi: 10.2337/diab.29.7.579. [DOI] [PubMed] [Google Scholar]
- Everett A. W., Clark W. A., Chizzonite R. A., Zak R. Change in synthesis rates of alpha- and beta-myosin heavy chains in rabbit heart after treatment with thyroid hormone. J Biol Chem. 1983 Feb 25;258(4):2421–2425. [PubMed] [Google Scholar]
- Grossman W., Robin N. I., Johnson L. W., Brooks H. L., Selenkow H. A., Dexter L. The enhanced myocardial contractility of thyrotoxicosis. Role of the beta adrenergic receptor. Ann Intern Med. 1971 Jun;74(6):869–874. doi: 10.7326/0003-4819-74-6-869. [DOI] [PubMed] [Google Scholar]
- Guttmann R. D. Genetics of acute rejection of rat cardiac allografts and a model of hyperacute rejection. Transplantation. 1974 Apr;17(4):383–386. doi: 10.1097/00007890-197404000-00007. [DOI] [PubMed] [Google Scholar]
- Hoh J. F., McGrath P. A., Hale P. T. Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol. 1978 Nov;10(11):1053–1076. doi: 10.1016/0022-2828(78)90401-7. [DOI] [PubMed] [Google Scholar]
- Kim D., Smith T. W. Effects of thyroid hormone on calcium handling in cultured chick ventricular cells. J Physiol. 1985 Jul;364:131–149. doi: 10.1113/jphysiol.1985.sp015735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein I., Levey G. S. New perspectives on thyroid hormone, catecholamines, and the heart. Am J Med. 1984 Feb;76(2):167–172. doi: 10.1016/0002-9343(84)90768-x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McDermott P., Daood M., Klein I. Contraction regulates myosin synthesis and myosin content of cultured heart cells. Am J Physiol. 1985 Oct;249(4 Pt 2):H763–H769. doi: 10.1152/ajpheart.1985.249.4.H763. [DOI] [PubMed] [Google Scholar]
- McDermott P., Daood M., Klein I. Measurement of myosin adenosinetriphosphatase and myosin content in cultured heart cells. Arch Biochem Biophys. 1985 Jul;240(1):312–318. doi: 10.1016/0003-9861(85)90036-0. [DOI] [PubMed] [Google Scholar]
- Morkin E., Flink I. L., Goldman S. Biochemical and physiologic effects of thyroid hormone on cardiac performance. Prog Cardiovasc Dis. 1983 Mar-Apr;25(5):435–464. doi: 10.1016/0033-0620(83)90004-x. [DOI] [PubMed] [Google Scholar]
- Ono K., Lindsey E. S. Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg. 1969 Feb;57(2):225–229. [PubMed] [Google Scholar]
- Philipson K. D., Edelman I. S. Thyroid hormone control of Na+-K+-ATPase and K+-dependent phosphatase in rat heart. Am J Physiol. 1977 May;232(5):C196–C201. doi: 10.1152/ajpcell.1977.232.5.C196. [DOI] [PubMed] [Google Scholar]
- Sanford C. F., Griffin E. E., Wildenthal K. Synthesis and degradation of myocardial protein during the development and regression of thyroxine-induced cardiac hypertrophy in rats. Circ Res. 1978 Nov;43(5):688–694. doi: 10.1161/01.res.43.5.688. [DOI] [PubMed] [Google Scholar]
- Schreiber S. S., Evans C. D., Oratz M., Rothschild M. A. Protein synthesis and degradation in cardiac stress. Circ Res. 1981 May;48(5):601–611. doi: 10.1161/01.res.48.5.601. [DOI] [PubMed] [Google Scholar]
- Sen S., Tarazi R. C. Regression of myocardial hypertrophy and influence of adrenergic system. Am J Physiol. 1983 Jan;244(1):H97–101. doi: 10.1152/ajpheart.1983.244.1.H97. [DOI] [PubMed] [Google Scholar]
- Siehl D., Chua B. H., Lautensack-Belser N., Morgan H. E. Faster protein and ribosome synthesis in thyroxine-induced hypertrophy of rat heart. Am J Physiol. 1985 Mar;248(3 Pt 1):C309–C319. doi: 10.1152/ajpcell.1985.248.3.C309. [DOI] [PubMed] [Google Scholar]
- Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha 1-adrenergic receptor and induction of beating through an alpha 1- and beta 1-adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res. 1985 Jun;56(6):884–894. doi: 10.1161/01.res.56.6.884. [DOI] [PubMed] [Google Scholar]
- Tsai J. S., Samuels H. H. Thyroid hormone action: stimulation of growth hormone and inhibition of prolactin secretion in cultured GH1 cells. Biochem Biophys Res Commun. 1974 Jul 10;59(1):420–428. doi: 10.1016/s0006-291x(74)80223-8. [DOI] [PubMed] [Google Scholar]
- Wikman-Coffelt J., Parmley W. W., Mason D. T. The cardiac hypertrophy process. Analyses of factors determining pathological vs. physiological development. Circ Res. 1979 Dec;45(6):697–707. doi: 10.1161/01.res.45.6.697. [DOI] [PubMed] [Google Scholar]
- Williams L. T., Lefkowitz R. J., Watanabe A. M., Hathaway D. R., Besch H. R., Jr Thyroid hormone regulation of beta-adrenergic receptor number. J Biol Chem. 1977 Apr 25;252(8):2787–2789. [PubMed] [Google Scholar]