Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 14;92(6):2234–2238. doi: 10.1073/pnas.92.6.2234

DNA nick processing by exonuclease and polymerase activities of bacteriophage T4 DNA polymerase accounts for acridine-induced mutation specificities in T4.

V L Kaiser 1, L S Ripley 1
PMCID: PMC42458  PMID: 7892253

Abstract

Acridine-induced frameshift mutagenesis in bacteriophage T4 has been shown to be dependent on T4 topoisomerase. In the absence of a functional T4 topoisomerase, in vivo acridine-induced mutagenesis is reduced to background levels. Further, the in vivo sites of acridine-induced deletions and duplications correlate precisely with in vitro sites of acridine-induced T4 topoisomerase cleavage. These correlations suggest that acridine-induced discontinuities introduced by topoisomerase could be processed into frameshift mutations. The induced mutations at these sites have a specific arrangement about the cleavage site. Deletions occur adjacent to the 3' end and duplications occur adjacent to the 5' end of the cleaved bond. It was proposed that at the nick, deletions could be produced by the 3'-->5' removal of bases by DNA polymerase-associated exonuclease and duplications could be produced by the 5'-->3' templated addition of bases. We have tested in vivo for T4 DNA polymerase involvement in nick processing, using T4 phage having DNA polymerases with altered ratios of exonuclease to polymerase activities. We predicted that the ratios of the deletion to duplication mutations induced by acridines in these polymerase mutant strains would reflect the altered exonuclease/polymerase ratios of the mutant T4 DNA polymerases. The results support this prediction, confirming that the two activities of the T4 DNA polymerase contribute to mutagenesis. The experiments show that the influence of T4 DNA polymerase in acridine-induced mutation specificities is due to its processing of acridine-induced 3'-hydroxyl ends to generate deletions and duplications by a mechanism that does not involve DNA slippage.

Full text

PDF
2234

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S., Lerman L. S. Effects of 9-aminoacridine on bacteriophage T4 deoxyribonucleic acid synthesis. J Mol Biol. 1970 Jun 14;50(2):263–277. doi: 10.1016/0022-2836(70)90191-9. [DOI] [PubMed] [Google Scholar]
  2. Bessman M. J., Muzyczka N., Goodman M. F., Schnaar R. L. Studies on the biochemical basis of spontaneous mutation. II. The incorporation of a base and its analogue into DNA by wild-type, mutator and antimutator DNA polymerases. J Mol Biol. 1974 Sep 15;88(2):409–421. doi: 10.1016/0022-2836(74)90491-4. [DOI] [PubMed] [Google Scholar]
  3. Brown M. D., Ripley L. S., Hall D. H. A proflavin-induced frameshift hotspot in the thymidylate synthase gene of bacteriophage T4. Mutat Res. 1993 Apr;286(2):189–197. doi: 10.1016/0027-5107(93)90183-g. [DOI] [PubMed] [Google Scholar]
  4. Calos M. P., Miller J. H. Genetic and sequence analysis of frameshift mutations induced by ICR-191. J Mol Biol. 1981 Nov 25;153(1):39–64. doi: 10.1016/0022-2836(81)90525-8. [DOI] [PubMed] [Google Scholar]
  5. Drake J. W., Allen E. F., Forsberg S. A., Preparata R. M., Greening E. O. Genetic control of mutation rates in bacteriophageT4. Nature. 1969 Mar 22;221(5186):1128–1132. [PubMed] [Google Scholar]
  6. Gillin F. D., Nossal N. G. Control of mutation frequency by bacteriophage T4 DNA polymerase. I. The CB120 antimutator DNA polymerase is defective in strand displacement. J Biol Chem. 1976 Sep 10;251(17):5219–5224. [PubMed] [Google Scholar]
  7. Gordon A. J., Halliday J. A., Horsfall M. J., Glickman B. W. Spontaneous and 9-aminoacridine-induced frameshift mutagenesis: second-site frameshift mutation within the N-terminal region of the lacI gene of Escherichia coli. Mol Gen Genet. 1991 May;227(1):160–164. doi: 10.1007/BF00260722. [DOI] [PubMed] [Google Scholar]
  8. Lo K. Y., Bessman M. J. An antimutator deoxyribonucleic acid polymerase. I. Purification and properties of the enzyme. J Biol Chem. 1976 Apr 25;251(8):2475–2479. [PubMed] [Google Scholar]
  9. Masurekar M., Kreuzer K. N., Ripley L. S. The specificity of topoisomerase-mediated DNA cleavage defines acridine-induced frameshift specificity within a hotspot in bacteriophage T4. Genetics. 1991 Mar;127(3):453–462. doi: 10.1093/genetics/127.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Muzyczka N., Poland R. L., Bessman M. J. Studies on the biochemical basis of spontaneous mutation. I. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator, and wild type strains of bacteriophage T4. J Biol Chem. 1972 Nov 25;247(22):7116–7122. [PubMed] [Google Scholar]
  11. ORGEL A., BRENNER S. Mutagenesis of bacteriophage T4 by acridines. J Mol Biol. 1961 Dec;3:762–768. doi: 10.1016/s0022-2836(61)80081-8. [DOI] [PubMed] [Google Scholar]
  12. Owen J. E., Schultz D. W., Taylor A., Smith G. R. Nucleotide sequence of the lysozyme gene of bacteriophage T4. Analysis of mutations involving repeated sequences. J Mol Biol. 1983 Apr 5;165(2):229–248. doi: 10.1016/s0022-2836(83)80255-1. [DOI] [PubMed] [Google Scholar]
  13. Ripley L. S., Clark A. Frameshift mutations produced by proflavin in bacteriophage T4: specificity within a hotspot. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6954–6958. doi: 10.1073/pnas.83.18.6954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ripley L. S., Clark A., deBoer J. G. Spectrum of spontaneous frameshift mutations. Sequences of bacteriophage T4 rII gene frameshifts. J Mol Biol. 1986 Oct 20;191(4):601–613. doi: 10.1016/0022-2836(86)90448-1. [DOI] [PubMed] [Google Scholar]
  15. Ripley L. S. Deletion and duplication sequences induced in CHO cells by teniposide (VM-26), a topoisomerase II targeting drug, can be explained by the processing of DNA nicks produced by the drug-topoisomerase interaction. Mutat Res. 1994 Apr;312(2):67–78. doi: 10.1016/0165-1161(94)90011-6. [DOI] [PubMed] [Google Scholar]
  16. Ripley L. S., Dubins J. S., deBoer J. G., DeMarini D. M., Bogerd A. M., Kreuzer K. N. Hotspot sites for acridine-induced frameshift mutations in bacteriophage T4 correspond to sites of action of the T4 type II topoisomerase. J Mol Biol. 1988 Apr 20;200(4):665–680. doi: 10.1016/0022-2836(88)90479-2. [DOI] [PubMed] [Google Scholar]
  17. Ripley L. S. Frameshift mutation: determinants of specificity. Annu Rev Genet. 1990;24:189–213. doi: 10.1146/annurev.ge.24.120190.001201. [DOI] [PubMed] [Google Scholar]
  18. Ripley L. S., Glickman B. W., Shoemaker N. B. Mutator versus antimutator activity of a T4 DNA polymerase mutant distinguishes two different frameshifting mechanisms. Mol Gen Genet. 1983;189(1):113–117. doi: 10.1007/BF00326062. [DOI] [PubMed] [Google Scholar]
  19. Ripley L. S., Shoemaker N. B. A major role for bacteriophage T4 DNA polymerase in frameshift mutagenesis. Genetics. 1983 Mar;103(3):353–366. doi: 10.1093/genetics/103.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rowe T. C., Tewey K. M., Liu L. F. Identification of the breakage-reunion subunit of T4 DNA topoisomerase. J Biol Chem. 1984 Jul 25;259(14):9177–9181. [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Skopek T. R., Hutchinson F. Frameshift mutagenesis of lambda prophage by 9-aminoacridine, proflavin and ICR-191. Mol Gen Genet. 1984;195(3):418–423. doi: 10.1007/BF00341442. [DOI] [PubMed] [Google Scholar]
  23. Spacciapoli P., Nossal N. G. A single mutation in bacteriophage T4 DNA polymerase (A737V, tsL141) decreases its processivity as a polymerase and increases its processivity as a 3'-->5' exonuclease. J Biol Chem. 1994 Jan 7;269(1):438–446. [PubMed] [Google Scholar]
  24. Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 1966;31:77–84. doi: 10.1101/sqb.1966.031.01.014. [DOI] [PubMed] [Google Scholar]
  25. Streisinger G., Owen J. Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4. Genetics. 1985 Apr;109(4):633–659. doi: 10.1093/genetics/109.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Topal M. D. Molecular mechanisms of chemical mutagenesis: 9-aminoacridine inhibits DNA replication in vitro by destabilizing the DNA growing point and interacting with the DNA polymerase. Biochemistry. 1984 May 22;23(11):2367–2372. doi: 10.1021/bi00306a007. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES