Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2010 Apr 1;1(4):393–405. doi: 10.1007/s13238-010-0038-6

Interaction of the α2A domain of integrin with small collagen fragments

Hans-Christian Siebert 1,, Monika Burg-Roderfeld 1, Thomas Eckert 1, Sabine Stötzel 1, Ulrike Kirch 1, Tammo Diercks 2,3, Martin J Humphries 4, Martin Frank 5, Rainer Wechselberger 3, Emad Tajkhorshid 6, Steffen Oesser 7
PMCID: PMC4246064  EMSID: EMS60867  PMID: 21203951

Abstract

We here present a detailed study of the ligand-receptor interactions between single and triple-helical strands of collagen and the α2A domain of integrin (α2A), providing valuable new insights into the mechanisms and dynamics of collagen-integrin binding at a sub-molecular level. The occurrence of single and triple-helical strands of the collagen fragments was scrutinized with atom force microscopy (AFM) techniques. Strong interactions of the triple-stranded fragments comparable to those of collagen can only be detected for the 42mer triple-helical collagen-like peptide under study (which contains 42 amino acid residues per strand) by solid phase assays as well as by surface plasmon resonance (SPR) measurements. However, changes in NMR signals during titration and characteristic saturation transfer difference (STD) NMR signals are also detectable when α2A is added to a solution of the 21mer single-stranded collagen fragment. Molecular dynamics (MD) simulations employing different sets of force field parameters were applied to study the interaction between triple-helical or single-stranded collagen fragments with α2A. It is remarkable that even single-stranded collagen fragments can form various complexes with α2A showing significant differences in the complex stability with identical ligands. The results of MD simulations are in agreement with the signal alterations in our NMR experiments, which are indicative of the formation of weak complexes between single-stranded collagen and α2A in solution. These results provide useful information concerning possible interactions of α2A with small collagen fragments that are of relevance to the design of novel therapeutic A-domain inhibitors.

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-010-0038-6 and is accessible for authorized users.

Keywords: integrin-collagen interaction, NMR, SPR, AFM, molecular modeling

Electronic supplementary material

13238_2010_38_MOESM1_ESM.pdf (603.4KB, pdf)

Supplementary material, approximately 603 KB.

Footnotes

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s13238-010-0038-6 and is accessible for authorized users.

References

  1. Bello A.E., Oesser S. Collagen hydrolysate for the treatment of osteoarthritis and other joint disorders: a review of the literature. Curr Med Res Opin. 2006;22:2221–2232. doi: 10.1185/030079906X148373. [DOI] [PubMed] [Google Scholar]
  2. Berisio R., Vitagliano L., Mazzarella L., Zagari A. Crystal structure of the collagen triple helix model [(Pro-Pro-Gly) (10)](3) Protein Sci. 2002;11:262–270. doi: 10.1110/ps.32602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhunia A., Vivekanandan S., Eckert T., Burg-Roderfeld M., Wechselberger R., Romanuka J., Bachle D., Kornilov A.V., von der Lieth C.W., Jimenez-Barbero J., et al. Why structurally different cyclic peptides can be glycomimetics of the HNK-1 carbohydrate antigen. J Am Chem Soc. 2010;132:96–105. doi: 10.1021/ja904334s. [DOI] [PubMed] [Google Scholar]
  4. Brooks B.R., Brooks C.L., Mackerell A.D., Nilsson L., Petrella R.J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., et al. CHARMM: The biomolecular simulation program. J Comput Chem. 2009;30:1545–1614. doi: 10.1002/jcc.21287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calderwood D.A., Tuckwell D.S., Humphries M.J. Specificity of integrin I-domain-ligand binding. Biochem Soc Trans. 1995;23:504S. doi: 10.1042/bst023504s. [DOI] [PubMed] [Google Scholar]
  6. Coe A.P., Askari J.A., Kline A.D., Robinson M.K., Kirby H., Stephens P.E., Humphries M.J. Generation of a minimal alpha5beta1 integrin-Fc fragment. J Biol Chem. 2001;276:35854–35866. doi: 10.1074/jbc.M103639200. [DOI] [PubMed] [Google Scholar]
  7. Darden T., Perera L., Li L., Pedersen L. New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure. 1999;7:R55–60. doi: 10.1016/S0969-2126(99)80033-1. [DOI] [PubMed] [Google Scholar]
  8. Dickeson S.K., Walsh J.J., Santoro S.A. Contributions of the I and EF hand domains to the divalent cation-dependent collagen binding activity of the alpha2beta1 integrin. J Biol Chem. 1997;272:7661–7668. doi: 10.1074/jbc.272.12.7661. [DOI] [PubMed] [Google Scholar]
  9. Diercks T., Coles M., Kessler H. Applications of NMR in drug discovery. Curr Opin Chem Biol. 2001;5:285–291. doi: 10.1016/S1367-5931(00)00204-0. [DOI] [PubMed] [Google Scholar]
  10. Elliott J.T., Woodward J.T., Langenbach K.J., Tona A., Jones P.L., Plant A.L. Vascular smooth muscle cell response on thin films of collagen. Matrix Biol. 2005;24:489–502. doi: 10.1016/j.matbio.2005.07.005. [DOI] [PubMed] [Google Scholar]
  11. Elliott J.T., Woodward J.T., Umarji A., Mei Y., Tona A. The effect of surface chemistry on the formation of thin films of native fibrillar collagen. Biomaterials. 2007;28:576–585. doi: 10.1016/j.biomaterials.2006.09.023. [DOI] [PubMed] [Google Scholar]
  12. Emsley J., Knight C.G., Farndale R.W., Barnes M.J. Structure of the integrin alpha2beta1-binding collagen peptide. J Mol Biol. 2004;335:1019–1028. doi: 10.1016/j.jmb.2003.11.030. [DOI] [PubMed] [Google Scholar]
  13. Emsley J., Knight C.G., Farndale R.W., Barnes M.J., Liddington R.C. Structural basis of collagen recognition by integrin alpha2beta1. Cell. 2000;101:47–56. doi: 10.1016/S0092-8674(00)80622-4. [DOI] [PubMed] [Google Scholar]
  14. Feller S.E., Zhang Y.H., Pastor R.W., Brooks B.R. Constant-pressure molecular-dynamics simulation-the Langevin Piston Method. J Chem Phys. 1995;103:4613–4621. doi: 10.1063/1.470648. [DOI] [Google Scholar]
  15. Grzesiak J.J., Bouvet M. Activation of the alpha2beta1 integrin-mediated malignant phenotype on type I collagen in pancreatic cancer cells by shifts in the concentrations of extracellular Mg2+ and Ca2+ Int J Cancer. 2008;122:2199–2209. doi: 10.1002/ijc.23368. [DOI] [PubMed] [Google Scholar]
  16. Grzesiak J.J., Pierschbacher M.D. Shifts in the concentrations of magnesium and calcium in early porcine and rat wound fluids activate the cell migratory response. J Clin Invest. 1995;95:227–233. doi: 10.1172/JCI117644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herr A.B., Farndale R.W. Structural insights into the interactions between platelet receptors and fibrillar collagen. J Biol Chem. 2009;284:19781–19785. doi: 10.1074/jbc.R109.013219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Huizinga E.G., Martijn van der Plas R., Kroon J., Sixma J.J., Gros P. Crystal structure of the A3 domain of human von Willebrand factor: implications for collagen binding. Structure. 1997;5:1147–1156. doi: 10.1016/S0969-2126(97)00266-9. [DOI] [PubMed] [Google Scholar]
  19. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. [DOI] [PubMed] [Google Scholar]
  20. Humphries J.D., Askari J.A., Zhang X.P., Takada Y., Humphries M. J., Mould A.P. Molecular basis of ligand recognition by integrin alpha5beta 1. II. Specificity of arg-gly-Asp binding is determined by Trp157 OF THE alpha subunit. J Biol Chem. 2000;275:20337–20345. doi: 10.1074/jbc.M000568200. [DOI] [PubMed] [Google Scholar]
  21. Humphries M.J. Insights into integrin-ligand binding and activation from the first crystal structure. Arthritis Res. 2002;4(Suppl3):S69–78. doi: 10.1186/ar563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hynes R.O. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–687. doi: 10.1016/S0092-8674(02)00971-6. [DOI] [PubMed] [Google Scholar]
  23. Ichikawa O., Osawa M., Nishida N., Goshima N., Nomura N., Shimada I. Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO J. 2007;26:4168–4176. doi: 10.1038/sj.emboj.7601833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jorgensen W.L., Chandrasekhar J., Buckner J.K., Madura J.D. Computer simulations of organic reactions in solution. Ann N Y Acad Sci. 1986;482:198–209. doi: 10.1111/j.1749-6632.1986.tb20951.x. [DOI] [PubMed] [Google Scholar]
  25. Kiedzierska A., Smietana K., Czepczynska H., Otlewski J. Structural similarities and functional diversity of eukaryotic discoidin-like domains. Biochim Biophys Acta. 2007;1774:1069–1078. doi: 10.1016/j.bbapap.2007.07.007. [DOI] [PubMed] [Google Scholar]
  26. Kim J.K., Xu Y., Xu X., Keene D.R., Gurusiddappa S., Liang X., Wary K.K., Hook M. A novel binding site in collagen type III for integrins alpha1beta1 and alpha2beta1. J Biol Chem. 2005;280:32512–32520. doi: 10.1074/jbc.M502431200. [DOI] [PubMed] [Google Scholar]
  27. Knight C.G., Morton L.F., Onley D.J., Peachey A.R., Messent A.J., Smethurst P.A., Tuckwell D.S., Farndale R.W., Barnes M.J. Identification in collagen type I of an integrin alpha2 beta1-binding site containing an essential GER sequence. J Biol Chem. 1998;273:33287–33294. doi: 10.1074/jbc.273.50.33287. [DOI] [PubMed] [Google Scholar]
  28. Leitinger B., Hohenester E. Mammalian collagen receptors. Matrix Biol. 2007;26:146–155. doi: 10.1016/j.matbio.2006.10.007. [DOI] [PubMed] [Google Scholar]
  29. Loeser R.F. Chondrocyte integrin expression and function. Biorheology. 2000;37:109–116. [PubMed] [Google Scholar]
  30. MacKerell A.D., Bashford D., Bellott M., Dunbrack R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616. doi: 10.1021/jp973084f. [DOI] [PubMed] [Google Scholar]
  31. Melacini G., Bonvin A.M.J.J., Goodman M., Boelens R., Kaptein R. Hydration dynamics of the collagen triple helix by NMR. J Mol Biol. 2000;300:1041–1048. doi: 10.1006/jmbi.2000.3919. [DOI] [PubMed] [Google Scholar]
  32. Morton L.F., Peachey A.R., Knight C.G., Farndale R.W., Barnes M.J. The platelet reactivity of synthetic peptides based on the collagen III fragment alpha1(III)CB4. Evidence for an integrin alpha2beta1 recognition site involving residues 522–528 of the alpha1(III) collagen chain. J Biol Chem. 1997;272:11044–11048. doi: 10.1074/jbc.272.17.11044. [DOI] [PubMed] [Google Scholar]
  33. Moskowitz R.W. Role of collagen hydrolysate in bone and joint disease. Semin Arthritis Rheum. 2000;30:87–99. doi: 10.1053/sarh.2000.9622. [DOI] [PubMed] [Google Scholar]
  34. Nahshol O., Bronner V., Notcovich A., Rubrecht L., Laune D., Bravman T. Parallel kinetic analysis and affinity determination of hundreds of monoclonal antibodies using the ProteOn XPR36. Anal Biochem. 2008;383:52–60. doi: 10.1016/j.ab.2008.08.017. [DOI] [PubMed] [Google Scholar]
  35. Nishida N., Sumikawa H., Sakakura M., Shimba N., Takahashi H., Terasawa H., Suzuki E., Shimada I. Collagen-binding mode of vWF-A3 domain determined by a transferred cross-saturation experiment. Nat Struct Biol. 2003;10:53–58. doi: 10.1038/nsb876. [DOI] [PubMed] [Google Scholar]
  36. Oesser S., Adam M., Babel W., Seifert J. Oral administration of (14)C labeled gelatin hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL) J Nutr. 1999;129:1891–1895. doi: 10.1093/jn/129.10.1891. [DOI] [PubMed] [Google Scholar]
  37. Oesser S., Seifert J. Stimulation of type II collagen biosynthesis and secretion in bovine chondrocytes cultured with degraded collagen. Cell Tissue Res. 2003;311:393–399. doi: 10.1007/s00441-003-0702-8. [DOI] [PubMed] [Google Scholar]
  38. Persikov A.V., Ramshaw J.A., Brodsky B. Prediction of collagen stability from amino acid sequence. J Biol Chem. 2005;280:19343–19349. doi: 10.1074/jbc.M501657200. [DOI] [PubMed] [Google Scholar]
  39. Plant A.L., Bhadriraju K., Spurlin T.A., Elliott J.T. Cell response to matrix mechanics: focus on collagen. Biochim Biophys Acta. 2009;1793:893–902. doi: 10.1016/j.bbamcr.2008.10.012. [DOI] [PubMed] [Google Scholar]
  40. Romijn R.A., Bouma B., Wuyster W., Gros P., Kroon J., Sixma J.J., Huizinga E.G. Identification of the collagen-binding site of the von Willebrand factor A3-domain. J Biol Chem. 2001;276:9985–9991. doi: 10.1074/jbc.M006548200. [DOI] [PubMed] [Google Scholar]
  41. Siebert H.C., Adar R., Arango R., Burchert M., Kaltner H., Kayser G., Tajkhorshid E., VonderLieth C.W., Kaptein R., Sharon N., et al. Involvement of laser photo-CIDNP(chemically induced dynamic nuclear polarization)-reactive amino acid side chains in ligand binding by galactoside-specific lectins in solution. Eur J Biochem. 1997;249:27–38. doi: 10.1111/j.1432-1033.1997.00027.x. [DOI] [PubMed] [Google Scholar]
  42. Siebert H.C., Andre S., Lu S.Y., Frank M., Kaltner H., van Kuik J. A., Korchagina E.Y., Bovin N., Tajkhorshid E., Kaptein R., et al. Unique conformer selection of human growth-regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins. Biochemistry. 2003;42:14762–14773. doi: 10.1021/bi035477c. [DOI] [PubMed] [Google Scholar]
  43. Siebert H.C., Born K., Andre S., Frank M., Kaltner H., von der Lieth C.W., Heck A.J., Jimenez-Barbero J., Kopitz J., Gabius H.J. Carbohydrate chain of ganglioside GM1 as a ligand: identification of the binding strategies of three 15 mer peptides and their divergence from the binding modes of growthregulatory galectin-1 and cholera toxin. Chemistry. 2005;12:388–402. doi: 10.1002/chem.200500505. [DOI] [PubMed] [Google Scholar]
  44. Siebert H.C., Lu S.Y., Frank M., Kramer J., Wechselberger R., Joosten J., Andre S., Rittenhouse-Olson K., Roy R., von der Lieth C.W., et al. Analysis of protein-carbohydrate interaction at the lower size limit of the protein part (15-mer peptide) by NMR spectroscopy, electrospray ionization mass spectrometry, and molecular modeling. Biochemistry. 2002;41:9707–9717. doi: 10.1021/bi025891x. [DOI] [PubMed] [Google Scholar]
  45. Siebert H.C., Lu S.Y., Wechselberger R., Born K., Eckert T., Liang S., von der Lieth C.W., Jimenez-Barbero J., Schauer R., Vliegenthart J.F., et al. A lectin from the Chinese bird-hunting spider binds sialic acids. Carbohydr Res. 2009;344:1515–1525. doi: 10.1016/j.carres.2009.06.002. [DOI] [PubMed] [Google Scholar]
  46. Siebert H.C., Tajkhorshid E., Dabrowski J. Barrier to rotation around the C-sp(2)-C-sp(2) bond of the ketoaldehyde enol ether MeC(O)CH = CH-OEt as determined by C-13 NMR and ab initio calculations. J Phys Chem A. 2001;105:8488–8494. doi: 10.1021/jp004476g. [DOI] [Google Scholar]
  47. Siljander P.R., Hamaia S., Peachey A.R., Slatter D.A., Smethurst P.A., Ouwehand W.H., Knight C.G., Farndale R.W. Integrin activation state determines selectivity for novel recognition sites in fibrillar collagens. J Biol Chem. 2004;279:47763–47772. doi: 10.1074/jbc.M404685200. [DOI] [PubMed] [Google Scholar]
  48. Sweeney S.M., Orgel J.P., Fertala A., McAuliffe J.D., Turner K.R., Di Lullo G.A., Chen S., Antipova O., Perumal S., Ala-Kokko L., et al. Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem. 2008;283:21187–21197. doi: 10.1074/jbc.M709319200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Valdramidou D., Humphries M.J., Mould A.P. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metalbinding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1. J Biol Chem. 2008;283:32704–32714. doi: 10.1074/jbc.M802066200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A.E., Berendsen H.J. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–1718. doi: 10.1002/jcc.20291. [DOI] [PubMed] [Google Scholar]
  51. van Lenthe J.H., den Boer D.H.W., Havenith R.W.A., Schauer R., Siebert H.C. Ab initio calculations on various sialic acids provide valuable information about sialic acid-specific enzymes. J Mol Struct (Theochem) 2004;677:29–37. doi: 10.1016/j.theochem.2004.01.013. [DOI] [Google Scholar]
  52. Vogel W.F., Abdulhussein R., Ford C.E. Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal. 2006;18:1108–1116. doi: 10.1016/j.cellsig.2006.02.012. [DOI] [PubMed] [Google Scholar]
  53. Wu A.M., Singh T., Liu J.H., Krzeminski M., Russwurm R., Siebert H.C., Bonvin A.M., Andre S., Gabius H.J. Activity-structure correlations in divergent lectin evolution: fine specificity of chicken galectin CG-14 and computational analysis of flexible ligand docking for CG-14 and the closely related CG-16. Glycobiology. 2007;17:165–184. doi: 10.1093/glycob/cwl062. [DOI] [PubMed] [Google Scholar]
  54. Xiong J.P., Stehle T., Zhang R., Joachimiak A., Frech M., Goodman S.L., Arnaout M.A. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296:151–155. doi: 10.1126/science.1069040. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

13238_2010_38_MOESM1_ESM.pdf (603.4KB, pdf)

Supplementary material, approximately 603 KB.


Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES