Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 14;92(6):2263–2267. doi: 10.1073/pnas.92.6.2263

Sequestration of anti-platelet GPIIIa antibody in rheumatoid factor immune complexes of human immunodeficiency virus 1 thrombocytopenic patients.

S Karpatkin 1, M A Nardi 1, K B Hymes 1
PMCID: PMC42464  PMID: 7892259

Abstract

Human immunodeficiency virus 1-related idiopathic thrombocytopenic purpura (HIV-1-ITP) patients have a 4-fold increased percentage of CD5+ B cells and a 4.8-fold increased percentage of serum immune complexes precipitated by polyethylene glycol (PEG-ICs) compared to control subjects, as reported previously. Since CD5+ B cells produce predominantly IgM rheumatoid factor (RF) vs. Fc of IgG and PEG-ICs contain high levels of IgM, we looked for the presence of RF in the immune complexes of HIV-1-ITP patients. PEG-ICs were adsorbed to protein A and dissociated with acid, and IgM and IgG were purified by gel filtration and affinity chromatography. Solid-phase ELISA was used to measure antibody specificity vs. platelets, Fc, and HIV-1 gp120, p24, and CD4. Dissociated IgG antibody reacted with platelets, HIV-1 gp120, p24, and CD4, but not with Fc. Serum IgG did not react with platelets or Fc but did react with HIV-1 gp120, p24, and CD4. Both PEG-IC IgM and serum IgM reacted with Fc as well as the other four antigens. Control IgM and IgG were unreactive. Isolated IgM from PEG-ICs relocated approximately 50% of the IgG preincubated with IgM to the Vo region of a G200 gel-filtration column. Anti-platelet IgG but not IgM could be affinity-purified from fixed platelets. Both F(ab')2 fragments of anti-platelet IgG and the total PEG-IC bound to platelets in a saturation-dependent manner. F(ab')2 of anti-platelet IgG inhibited 50% binding of PEG-IC to platelets at an F(ab')2/complex ratio of 3:1 (wt/wt). Scatchard analysis revealed two classes of binding sites: high-affinity Kd values of 0.8-1.8 nM and lower-affinity Kd values of 6.6-12.3 nM with respective numbers of binding sites of 44,000-57,000 and 122,000-256,000 (n = 4). Anti-platelet IgG of 6/6 patients precipitated GPIIIa from platelet lysates of surface 125I-labeled platelets. Platelet count correlated inversely with anti-platelet IgG (r = -0.73; P < 0.01; n = 27). Thus, PEG-ICs of HIV-1-ITP patients contain IgM RF, which sequesters serum anti-platelet IgG containing anti-GPIIIa. Anti-platelet IgG contributes to binding of immune complexes to platelets and correlates with thrombocytopenia.

Full text

PDF
2263

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araujo P. M., Holmberg D., Martinez-A C., Coutinho A. Idiotypic multireactivity of 'natural' antibodies. 'Natural' anti-idiotypes also inhibit helper cells with cross-reactive clonotypes. Scand J Immunol. 1987 May;25(5):497–505. doi: 10.1111/j.1365-3083.1987.tb02221.x. [DOI] [PubMed] [Google Scholar]
  2. Ballem P. J., Belzberg A., Devine D. V., Lyster D., Spruston B., Chambers H., Doubroff P., Mikulash K. Kinetic studies of the mechanism of thrombocytopenia in patients with human immunodeficiency virus infection. N Engl J Med. 1992 Dec 17;327(25):1779–1784. doi: 10.1056/NEJM199212173272503. [DOI] [PubMed] [Google Scholar]
  3. Bettaieb A., Fromont P., Louache F., Oksenhendler E., Vainchenker W., Duédari N., Bierling P. Presence of cross-reactive antibody between human immunodeficiency virus (HIV) and platelet glycoproteins in HIV-related immune thrombocytopenic purpura. Blood. 1992 Jul 1;80(1):162–169. [PubMed] [Google Scholar]
  4. Burastero S. E., Casali P. Characterization of human CD5 (Leu-1, OKT1)+ B lymphocytes and the antibodies they produce. Contrib Microbiol Immunol. 1989;11:231–262. [PubMed] [Google Scholar]
  5. Dauphinée M., Tovar Z., Talal N. B cells expressing CD5 are increased in Sjögren's syndrome. Arthritis Rheum. 1988 May;31(5):642–647. doi: 10.1002/art.1780310509. [DOI] [PubMed] [Google Scholar]
  6. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  7. Hardy R. R., Hayakawa K., Shimizu M., Yamasaki K., Kishimoto T. Rheumatoid factor secretion from human Leu-1+ B cells. Science. 1987 Apr 3;236(4797):81–83. doi: 10.1126/science.3105057. [DOI] [PubMed] [Google Scholar]
  8. Hayakawa K., Hardy R. R., Parks D. R., Herzenberg L. A. The "Ly-1 B" cell subpopulation in normal immunodefective, and autoimmune mice. J Exp Med. 1983 Jan 1;157(1):202–218. doi: 10.1084/jem.157.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hymes K., Nardi M., Leaf A., Karpatkin S. Role of leuCAM integrins and complement in platelet-monocyte rosette formation induced by immune complexes of human immunodeficiency virus-type 1-immune thrombocytopenic purpura patients. Blood. 1993 May 1;81(9):2375–2380. [PubMed] [Google Scholar]
  10. Karpatkin S., Nardi M. A. Immunologic thrombocytopenic purpura in human immunodeficiency virus--seropositive patients with hemophilia. Comparison with patients with classic autoimmune thrombocytopenic purpura, homosexuals with thrombocytopenia, and narcotic addicts with thrombocytopenia. J Lab Clin Med. 1988 Apr;111(4):441–448. [PubMed] [Google Scholar]
  11. Karpatkin S., Nardi M. A., Kouri Y. H. Internal-image anti-idiotype HIV-1gp120 antibody in human immunodeficiency virus 1 (HIV-1)-seropositive individuals with thrombocytopenia. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1487–1491. doi: 10.1073/pnas.89.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karpatkin S., Nardi M., Lennette E. T., Byrne B., Poiesz B. Anti-human immunodeficiency virus type 1 antibody complexes on platelets of seropositive thrombocytopenic homosexuals and narcotic addicts. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9763–9767. doi: 10.1073/pnas.85.24.9763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karpatkin S., Xia J., Patel J., Thorbecke G. J. Serum platelet-reactive IgG of autoimmune thrombocytopenic purpura patients is not F(ab')2 mediated and a function of storage. Blood. 1992 Dec 15;80(12):3164–3172. [PubMed] [Google Scholar]
  14. Kulczycki A., Jr, Krause V., Killion C. C., Atkinson J. P. Improved cell surface radioiodination of macrophages. J Immunol Methods. 1980;37(2):133–138. doi: 10.1016/0022-1759(80)90198-2. [DOI] [PubMed] [Google Scholar]
  15. Landonio G., Galli M., Nosari A., Lazzarin A., Cipriani D., Crocchiolo P., Voltolin L., Giannelli F., Irato L., De Cataldo F. HIV-related severe thrombocytopenia in intravenous drug users: prevalence, response to therapy in a medium-term follow-up, and pathogenetic evaluation. AIDS. 1990 Jan;4(1):29–34. [PubMed] [Google Scholar]
  16. Lyman B., Rosenberg L., Karpatkin S. Biochemical and biophysical aspects of human platelet adhesion to collagen fibers. J Clin Invest. 1971 Sep;50(9):1854–1863. doi: 10.1172/JCI106677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morris L., Distenfeld A., Amorosi E., Karpatkin S. Autoimmune thrombocytopenic purpura in homosexual men. Ann Intern Med. 1982 Jun;96(6 Pt 1):714–717. doi: 10.7326/0003-4819-96-6-714. [DOI] [PubMed] [Google Scholar]
  18. Niiya K., Hodson E., Bader R., Byers-Ward V., Koziol J. A., Plow E. F., Ruggeri Z. M. Increased surface expression of the membrane glycoprotein IIb/IIIa complex induced by platelet activation. Relationship to the binding of fibrinogen and platelet aggregation. Blood. 1987 Aug;70(2):475–483. [PubMed] [Google Scholar]
  19. Painter C. J., Monestier M., Chew A., Bona-Dimitriu A., Kasturi K., Bailey C., Scott V. E., Sidman C. L., Bona C. A. Specificities and V genes encoding monoclonal autoantibodies from viable motheaten mice. J Exp Med. 1988 Mar 1;167(3):1137–1153. doi: 10.1084/jem.167.3.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Plater-Zyberk C., Maini R. N., Lam K., Kennedy T. D., Janossy G. A rheumatoid arthritis B cell subset expresses a phenotype similar to that in chronic lymphocytic leukemia. Arthritis Rheum. 1985 Sep;28(9):971–976. doi: 10.1002/art.1780280903. [DOI] [PubMed] [Google Scholar]
  21. Savona S., Nardi M. A., Lennette E. T., Karpatkin S. Thrombocytopenic purpura in narcotics addicts. Ann Intern Med. 1985 Jun;102(6):737–741. doi: 10.7326/0003-4819-102-6-737. [DOI] [PubMed] [Google Scholar]
  22. Walsh C. M., Nardi M. A., Karpatkin S. On the mechanism of thrombocytopenic purpura in sexually active homosexual men. N Engl J Med. 1984 Sep 6;311(10):635–639. doi: 10.1056/NEJM198409063111004. [DOI] [PubMed] [Google Scholar]
  23. Yu J. R., Lennette E. T., Karpatkin S. Anti-F(ab')2 antibodies in thrombocytopenic patients at risk for acquired immunodeficiency syndrome. J Clin Invest. 1986 Jun;77(6):1756–1761. doi: 10.1172/JCI112498. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES