Skip to main content
Annals of Botany logoLink to Annals of Botany
. 2005 Sep 21;96(6):1027–1046. doi: 10.1093/aob/mci255

Phylogenetic Variation in the Silicon Composition of Plants

M J HODSON 1, P J WHITE 2, A MEAD 2, M R BROADLEY 3,*
PMCID: PMC4247092  PMID: 16176944

Abstract

Background and Aims Silicon (Si) in plants provides structural support and improves tolerance to diseases, drought and metal toxicity. Shoot Si concentrations are generally considered to be greater in monocotyledonous than in non-monocot plant species. The phylogenetic variation in the shoot Si concentration of plants reported in the primary literature has been quantified.

Methods Studies were identified which reported Si concentrations in leaf or non-woody shoot tissues from at least two plant species growing in the same environment. Each study contained at least one species in common with another study.

Key Results Meta-analysis of the data revealed that, in general, ferns, gymnosperms and angiosperms accumulated less Si in their shoots than non-vascular plant species and horsetails. Within angiosperms and ferns, differences in shoot Si concentration between species grouped by their higher-level phylogenetic position were identified. Within the angiosperms, species from the commelinoid monocot orders Poales and Arecales accumulated substantially more Si in their shoots than species from other monocot clades.

Conclusions A high shoot Si concentration is not a general feature of monocot species. Information on the phylogenetic variation in shoot Si concentration may provide useful palaeoecological and archaeological information, and inform studies of the biogeochemical cycling of Si and those of the molecular genetics of Si uptake and transport in plants.

Keywords: Biogeochemistry, fertilizer, phytoliths, silica, transporter, uptake

INTRODUCTION

Silicon is the second most abundant element in the soil after oxygen (reviewed by Epstein, 1999; Richmond and Sussman, 2003). Most Si is present in the soil as insoluble oxides or silicates, although soluble silicic acid occurs in the range of 0·1–0·6 mm. Silicon is also one of the most abundant mineral elements in plant tissues and shoot concentrations in excess of 10 % d. wt have been reported (Epstein, 1999). Plants growing under natural conditions do not appear to suffer from Si deficiencies. However, Si-containing fertilizers are routinely applied to several crops including rice (Pereira et al., 2004) and sugar cane (Savant et al., 1999) to increase crop yield and quality. Increased Si supply improves the structural integrity of crops and may also improve plant tolerance to diseases, drought and metal toxicities (reviewed by Epstein, 1999; Richmond and Sussman, 2003; Ma, 2004). For example, Si deposition in the cell walls of root endodermal cells may contribute to the maintenance of an effective apoplastic barrier and thereby improve plant resistance to disease and drought stresses (Lux et al., 2002, 2003a, b; Hattori et al., 2005), whilst intra- and extracellular deposition of aluminosilicates in roots and shoots is thought to protect some species from potential Al toxicity (Hodson and Evans, 1995; Hodson and Sangster, 1999; Britez et al., 2002; Jansen et al., 2003; Wang et al., 2004).

Early studies of Si in plants noted that species of Poaceae contained between 10 and 20 times the concentration of Si found in non-monocotyledonous species (de Saussure, 1804; Jones and Handreck, 1967). Recent reviews report that Si accumulation is, in general, higher in monocot than in non-monocot species (Epstein, 1999; Richmond and Sussman, 2003). However, detailed sampling of specimens from botanical gardens by Takahashi and colleagues (reviewed in Ma and Takahashi, 2002, and references therein) indicates that Si accumulation is largely restricted to primitive land plants and to certain monocot clades, namely the Poaceae, Cyperaceae and Commelinaceae. There is also evidence from these detailed studies that Si may accumulate in certain dicot clades such as the Urticaceae and Cucurbitaceae. In this study, the phylogenetic variation in shoot Si concentration amongst plant species has been quantified by analysing all of the appropriate literature data that could be sourced. These include the extensive data compiled by Takahashi and colleagues (Ma and Takahashi, 2002, and references therein). Using a recent consensus angiosperm phylogeny, it was thus possible to test the hypothesis that high shoot Si concentration is a general feature of monocot species, and it was also possible to identify Si accumulation features in several other well-represented clades of plant species.

MATERIALS AND METHODS

Data from 125 studies, contained in 54 papers in the primary literature, were identified that reported Si concentrations of leaf or non-woody shoot tissues in at least two species growing in the same environment, and which contained at least one species in common with another study (studies listed in the Appendix; additional information is available online at http://aob.oxfordjournals.org). Wherever possible, species nomenclature was based on the original study. Where taxonomic uncertainties occurred, the closest species match was inferred. Angiosperm species nomenclature and familial assignment/informal groupings were based on the United States Department of Agriculture (USDA) National Genetic Resources Program. Germplasm Resources Information Network (GRIN) (http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl) and the Angiosperm Phylogeny Group classification (APG, 1998). Non-angiosperm species nomenclature and family assignment was based on information obtained from (a) The Flowering Plant Gateway (http://www.csdl.tamu.edu/FLORA/newgate/gateopen.htm); (b) The International Plant Names Index (http://www.ipni.org/index.html); or (c) The National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov).

The mean relative shoot Si concentration of each species across all studies was estimated. To adjust for differences in shoot Si concentration between studies, a residual maximum likelihood (REML) procedure was used. All methods have been described previously (Broadley et al., 2003). Briefly, the REML procedure adjusts for differences in between-study variances and means in order to generate an overall treatment mean, which in this case is the shoot Si concentration for each species, i.e. species means are effectively averaged across studies. Since the REML fitting procedures can produce negative treatment means, species Si concentrations were considered as relative values on a linear scale. Estimates of variation in shoot Si concentration were simultaneously fit to a variance components model of [study+(group/order/family/genus/species)]. To test for significant differences between species classified by their higher-level phylogenetic position, one-way ANOVA was performed on restricted subsets of the data. All statistical analyses were performed using GenStat (Release 6.1.0.200, VSN International, Oxford, UK).

RESULTS AND DISCUSSION

Seven hundred and thirty-five species were sampled from 125 studies (Table 1; additional information is available online at http://aob.oxfordjournals.org), including 600 species of angiosperms, 67 gymnosperms, 59 ferns (Polypodiophyta), five clubmosses (Lycopodiophyta), two horsetails (Equisetophyta), one liverwort (Marchantiophyta) and one moss (Bryophyta). Within a variance components model of [study+(group/order/family/genus/species)], group and order accounted for 67 % of the variation in relative shoot Si concentration (Table 2). The remaining variation was attributed to within-order (17 %) and to between-study (16 %) variance components. Thus, high-level phylogenetic position influences the shoot Si concentration of plants. This observation is consistent with literature and experimental studies of other elements including Ca, K, Mg (Broadley et al., 2003, 2004; White and Broadley, 2003; White, 2005), Ni and Zn (Broadley et al., 2001). In contrast, variation in the relative shoot concentrations of N, P (Broadley et al., 2004) and Se (White et al., 2004) is dominated by species-level variance components, and thus there is no evidence that the tissue concentration of these elements differs systematically between groups of species according to their phylogenetic position.

Table 1.

Mean relative shoot Si concentration of 735 plant species. Data are from 125 studies, contained in 54 papers in the primary literature, in which Si concentrations of leaf or non-woody shoot tissue were reported. Each study included at least two plant species growing in the same environment, and each study contained at least one species in common with another study. A residual maximum likelihood procedure was performed on the 1066 linked data to estimate the mean relative shoot Si concentration of species, adjusted for differences between studies.

Group
Order
Family
Species
Mean relative shoot Si concentration
Ranking
Study number (full reference in Appendix)
Angiosperm Acorales Acoraceae Acorus calamus −0·058 57 83
Angiosperm Acorales Acoraceae Acorus gramineus 0·002 91 83
Angiosperm Alismatales Alismataceae Sagittaria lancifolia 0·442 337 74
Angiosperm Alismatales Alismataceae Sagittaria trifolia 0·292 260 83
Angiosperm Alismatales Araceae Amorphophallus rivieri −0·058 58 83
Angiosperm Alismatales Araceae Pistia stratiotes 0·072 145 83
Angiosperm Alismatales Araceae Zamioculcas zamiifolia 0·528 365 71
Angiosperm Alismatales Cymodoceaceae Halodule beaudettei 0·999 530 79
Angiosperm Alismatales Juncaginaceae Triglochin maritima 0·565 378 20, 106
Angiosperm Alismatales Juncaginaceae Triglochin striata 1·033 540 78
Angiosperm Alismatales Ruppiaceae Ruppia maritima 1·779 653 79
Angiosperm Apiales Apiaceae Ammi visnaga 0·729 462 19
Angiosperm Apiales Apiaceae Conium maculatum −0·068 54 83
Angiosperm Apiales Apiaceae Ferula varia 1·069 556 69
Angiosperm Apiales Apiaceae Foeniculum vulgare 0·623 403 19
Angiosperm Apiales Apiaceae Lilaeopsis chinensis 2·242 682 74
Angiosperm Apiales Araliaceae Aralia cordata −0·018 75 83
Angiosperm Apiales Araliaceae Hydrocotyle bonariensis 0·513 364 78
Angiosperm Apiales Araliaceae Panax ginseng 0·102 161 83
Angiosperm Apiales Araliaceae Polyscias filicifolia 0·358 294 71
Angiosperm Apiales Pittosporaceae Pittosporum tobira 0·042 115 86
Angiosperm Aquifoliales Aquifoliaceae Ilex aquifolium 0·002 92 83
Angiosperm Aquifoliales Aquifoliaceae Ilex integra 0·182 204 86
Angiosperm Aquifoliales Aquifoliaceae Ilex latifolia 0·122 173 86
Angiosperm Arecales Arecaceae Phoenix dactylifera 0·172 197 83
Angiosperm Arecales Arecaceae Phoenix roebelenii 0·202 219 83
Angiosperm Arecales Arecaceae Rhapis humilis 0·422 329 83
Angiosperm Arecales Arecaceae Trachycarpus fortunei 1·312 597 83
Angiosperm Arecales Arecaceae Washingtonia filifera 1·738 650 71
Angiosperm Arecales Arecaceae Caryota mitis 1·598 636 71
Angiosperm Arecales Arecaceae Sabal etonia 1·910 663 66
Angiosperm Arecales Arecaceae Sabal minor 1·036 543 76
Angiosperm Arecales Arecaceae Serenoa repens 2·443 691 66, 79
Angiosperm Asparagales Agavaceae Agave americana 0·042 116 83
Angiosperm Asparagales Agavaceae Hosta longissima −0·008 82 83
Angiosperm Asparagales Agavaceae Yucca aloifolia 0·056 127 76
Angiosperm Asparagales Agavaceae Yucca filamentosa −0·018 76 83
Angiosperm Asparagales Alliaceae Allium fistulosum 0·072 146 83
Angiosperm Asparagales Amaryllidaceae Crinum asiaticum −0·078 49 83
Angiosperm Asparagales Amaryllidaceae Lycoris radiata −0·088 47 83
Angiosperm Asparagales Amaryllidaceae Zephyranthes candida 0·002 93 83
Angiosperm Asparagales Anemarrhenaceae Anemarrhena asphodeloides −0·018 77 83
Angiosperm Asparagales Asparagaceae Asparagus cochinchinensis 0·152 191 83
Angiosperm Asparagales Asparagaceae Asparagus officinalis 0·341 281 69, 83
Angiosperm Asparagales Asphodelaceae Aloë arborescens 0·062 132 83
Angiosperm Asparagales Convallariaceae Aspidistra elatior −0·038 65 83
Angiosperm Asparagales Convallariaceae Convallaria majalis 0·432 333 83
Angiosperm Asparagales Convallariaceae Polygonatum odoratum −0·008 83 83
Angiosperm Asparagales Convallariaceae Rohdea japonica 0·152 192 83
Angiosperm Asparagales Convallariaceae Sansevieria trifasciata −0·088 48 83
Angiosperm Asparagales Convallariaceae Smilacina japonica 0·442 338 83
Angiosperm Asparagales Hemerocallidaceae Hemerocallis fulva 0·082 148 83
Angiosperm Asparagales Iridaceae Iris ensata 0·052 123 83
Angiosperm Asparagales Iridaceae Iris florentina −0·018 78 83
Angiosperm Asparagales Iridaceae Iris setosa 0·082 149 83
Angiosperm Asparagales Orchidaceae Bletilla striata 0·372 301 83
Angiosperm Asparagales Orchidaceae Spiranthes sinensis −0·038 66 83
Angiosperm Asterales Asteraceae Achillea millefolium 1·438 613 36
Angiosperm Asterales Asteraceae Anaphalis margaritacea −0·192 43 36
Angiosperm Asterales Asteraceae Artemisia absinthium 0·222 227 83
Angiosperm Asterales Asteraceae Artemisia cana 0·263 250 7
Angiosperm Asterales Asteraceae Artemisia frigida 0·573 380 7
Angiosperm Asterales Asteraceae Artemisia gnaphalodes 0·120 171 6
Angiosperm Asterales Asteraceae Artemisia maritima 0·002 94 83
Angiosperm Asterales Asteraceae Artemisia tridentata 0·665 431 12, 13
Angiosperm Asterales Asteraceae Aster laevis 0·260 243 6
Angiosperm Asterales Asteraceae Aster macrophyllus 0·698 446 36
Angiosperm Asterales Asteraceae Aster tenuifolia 0·030 108 75, 77
Angiosperm Asterales Asteraceae Aster tripolium 0·457 346 20
Angiosperm Asterales Asteraceae Baccharis halimifolia 0·032 109 83
Angiosperm Asterales Asteraceae Baccharis trimera 0·362 296 88
Angiosperm Asterales Asteraceae Boltonia asteroides 1·242 585 74
Angiosperm Asterales Asteraceae Borrichia frutescens 0·556 376 78, 79
Angiosperm Asterales Asteraceae Centaurea iberica 0·709 451 19
Angiosperm Asterales Asteraceae Chamomilla recutita 0·062 133 83
Angiosperm Asterales Asteraceae Chrysanthemum coronarium 0·082 150 83
Angiosperm Asterales Asteraceae Chrysanthemum morii 0·243 236 90
Angiosperm Asterales Asteraceae Conyza canadensis 0·635 412 19
Angiosperm Asterales Asteraceae Eclipta erecta 0·771 472 19
Angiosperm Asterales Asteraceae Erigeron crispus 0·608 392 19
Angiosperm Asterales Asteraceae Eupatorium fortunei 0·272 253 83
Angiosperm Asterales Asteraceae Grindelia squarrosa 0·717 458 82
Angiosperm Asterales Asteraceae Helianthus angustifolius 1·127 568 82
Angiosperm Asterales Asteraceae Helianthus annuus 1·876 661 107, 108
Angiosperm Asterales Asteraceae Helianthus atrorubens 1·047 547 82
Angiosperm Asterales Asteraceae Helianthus maximilianii 2·607 696 8
Angiosperm Asterales Asteraceae Helianthus tuberosus 2·747 704 82
Angiosperm Asterales Asteraceae Inula graveolens 0·773 473 19
Angiosperm Asterales Asteraceae Inula helenium 0·769 471 69
Angiosperm Asterales Asteraceae Inula viscosa 0·678 432 19
Angiosperm Asterales Asteraceae Iva frutescens 0·906 508 76
Angiosperm Asterales Asteraceae Lactuca serriola 0·792 478 19
Angiosperm Asterales Asteraceae Leontodon hispidus 0·230 231 18
Angiosperm Asterales Asteraceae Megalodonta tripartita 0·724 459 19
Angiosperm Asterales Asteraceae Picris echioides 0·709 450 19
Angiosperm Asterales Asteraceae Pluchea purpurascens 0·392 308 75
Angiosperm Asterales Asteraceae Polymnia uvedalia 0·499 361 76, 81
Angiosperm Asterales Asteraceae Pulicaria dysenterica 0·618 397 19
Angiosperm Asterales Asteraceae Senecio fuchsii 0·530 368 37, 42, 44, 45
Angiosperm Asterales Asteraceae Seriphidium maritimum 0·657 427 20
Angiosperm Asterales Asteraceae Solidago sempervirens 0·412 323 74
Angiosperm Asterales Asteraceae Sonchus oleraceus 0·689 440 19
Angiosperm Asterales Asteraceae Trilisa odoratissima 0·639 415 79
Angiosperm Asterales Asteraceae Xanthium strumarium 0·708 449 19
Angiosperm Asterales Lobeliaceae Lobelia cardinalis 0·222 225 75
Angiosperm Brassicales Bataceae Batis maritima 0·409 321 79
Angiosperm Brassicales Brassicaceae Armoracia rusticana −0·058 59 83
Angiosperm Brassicales Brassicaceae Brassica alba 0·226 230 65
Angiosperm Brassicales Brassicaceae Brassica napus −0·116 45 5, 93
Angiosperm Brassicales Brassicaceae Brassica rapa −1·902 13 93, 94, 95, 96
Angiosperm Brassicales Brassicaceae Hirschfeldia incana 0·740 464 19
Angiosperm Brassicales Brassicaceae Nasturtium officinale 0·830 487 70
Angiosperm Brassicales Brassicaceae Wasabia japonica 0·042 117 83
Angiosperm Brassicales Tropaeolaceae Tropaeolum majus −0·078 50 83
Angiosperm Caryophyllales Amaranthaceae Alternanthera sessilis 0·837 492 19
Angiosperm Caryophyllales Amaranthaceae Amaranthus albus 0·625 404 19
Angiosperm Caryophyllales Amaranthaceae Amaranthus gracilis 0·619 399 19
Angiosperm Caryophyllales Amaranthaceae Amaranthus graecizans 0·600 388 19
Angiosperm Caryophyllales Amaranthaceae Amaranthus retroflexus 0·758 469 19
Angiosperm Caryophyllales Amaranthaceae Amaranthus spp. 2·607 697 8
Angiosperm Caryophyllales Amaranthaceae Amaranthus viridis 0·052 124 83
Angiosperm Caryophyllales Amaranthaceae Atriplex canescens 0·357 293 8
Angiosperm Caryophyllales Amaranthaceae Atriplex littoralis 0·347 283 20
Angiosperm Caryophyllales Amaranthaceae Atriplex nuttallii 0·393 311 7
Angiosperm Caryophyllales Amaranthaceae Atriplex portulacoides 0·497 360 20
Angiosperm Caryophyllales Amaranthaceae Atriplex prostrata 0·347 284 20
Angiosperm Caryophyllales Amaranthaceae Atriplex rosea 0·695 443 19
Angiosperm Caryophyllales Amaranthaceae Chenopodium album 0·421 328 19, 75
Angiosperm Caryophyllales Amaranthaceae Chenopodium murale 0·724 460 19
Angiosperm Caryophyllales Amaranthaceae Chenopodium opulifolium 0·665 430 19
Angiosperm Caryophyllales Amaranthaceae Eurotia lanata 0·393 312 7
Angiosperm Caryophyllales Amaranthaceae Kochia scoparia 0·967 523 8
Angiosperm Caryophyllales Amaranthaceae Salicornia bigelovii 0·629 408 79
Angiosperm Caryophyllales Amaranthaceae Salicornia europaea 0·347 282 20
Angiosperm Caryophyllales Amaranthaceae Salicornia virginica 0·289 257 79
Angiosperm Caryophyllales Amaranthaceae Salsola kali 1·017 535 8
Angiosperm Caryophyllales Amaranthaceae Suaeda maritima 0·467 351 20
Angiosperm Caryophyllales Caryophyllaceae Dianthus superbus −0·038 67 83
Angiosperm Caryophyllales Caryophyllaceae Saponaria officinalis 0·172 198 83
Angiosperm Caryophyllales Caryophyllaceae Spergularia media 0·347 285 20
Angiosperm Caryophyllales Molluginaceae Glinus lotoides 0·631 409 19
Angiosperm Caryophyllales Plumbaginaceae Limonium carolinianum 0·247 238 73
Angiosperm Caryophyllales Plumbaginaceae Limonium vulgare 0·347 286 20
Angiosperm Caryophyllales Polygonaceae Polygonum acuminatum 0·740 465 19
Angiosperm Caryophyllales Polygonaceae Polygonum arenastrum 0·614 394 19
Angiosperm Caryophyllales Polygonaceae Polygonum aviculare 1·709 646 69
Angiosperm Caryophyllales Polygonaceae Polygonum fagopyrum −0·021 74 5
Angiosperm Caryophyllales Polygonaceae Polygonum hydropiper 0·052 125 83
Angiosperm Caryophyllales Polygonaceae Polygonum lapathifolium 0·653 424 19
Angiosperm Caryophyllales Polygonaceae Polygonum patulum 0·615 395 19
Angiosperm Caryophyllales Polygonaceae Polygonum punctatum 1·279 590 79
Angiosperm Caryophyllales Polygonaceae Polygonum salicifolium 0·605 390 19
Angiosperm Caryophyllales Polygonaceae Polygonum senegalense 0·620 400 19
Angiosperm Caryophyllales Polygonaceae Rumex dentatus 0·607 391 19
Angiosperm Caryophyllales Tamaricaceae Tamarix chinensis 0·442 339 83
Angiosperm Caryophyllales Tamaricaceae Tamarix jordanis 0·645 418 19
Angiosperm Commelinales Commelinaceae Tradescantia ohiensis 0·292 261 83
Angiosperm Cornales Cornaceae Alangium platanifolium 0·152 188 86
Angiosperm Cornales Cornaceae Cornus stolonifera 0·350 290 26
Angiosperm Cornales Hydrangeaceae Hydrangea macrophylla 0·332 278 83, 86
Angiosperm Cornales Hydrangeaceae Philadelphus satsumi −0·048 60 83
Angiosperm Cucurbitales Cucurbitaceae Benincasa hispida 0·322 271 83
Angiosperm Cucurbitales Cucurbitaceae Citrullus lanatus 0·837 493 103
Angiosperm Cucurbitales Cucurbitaceae Ecballium elaterium 0·472 353 83
Angiosperm Cucurbitales Cucurbitaceae Luffa acutangula 0·422 330 83
Angiosperm Dipsacales Caprifoliaceae Symphoricarpos occidentalis 0·540 371 6
Angiosperm Dipsacales Valerianaceae Valeriana officinalis 0·709 452 69
Angiosperm Ericales Clethraceae Clethra alnifolia 1·199 581 79
Angiosperm Ericales Cyrillaceae Cliftonia monophylla 0·419 327 79
Angiosperm Ericales Ericaceae Arctostaphylos uva-ursi 0·322 273 15
Angiosperm Ericales Ericaceae Calluna vulgaris 0·729 463 3, 15, 37
Angiosperm Ericales Ericaceae Ceratiola ericoides 0·309 265 79
Angiosperm Ericales Ericaceae Empetrum nigrum 0·392 310 15
Angiosperm Ericales Ericaceae Erica canaliculata 0·062 134 83
Angiosperm Ericales Ericaceae Loiseleuria procumbens 0·453 343 15
Angiosperm Ericales Ericaceae Lyonia ferruginea 0·578 381 66
Angiosperm Ericales Ericaceae Pieris japonica 0·062 131 86
Angiosperm Ericales Ericaceae Rhododendron ferrugineum 0·322 274 15
Angiosperm Ericales Ericaceae Rhododendron japonicum 0·322 272 83
Angiosperm Ericales Ericaceae Rhododendron pulchrum 0·152 189 86
Angiosperm Ericales Ericaceae Vaccinium myrtillus 0·082 147 3, 15, 40, 43, 44, 46, 49, 50
Angiosperm Ericales Ericaceae Vaccinium uliginosum 0·350 288 15
Angiosperm Ericales Ericaceae Vaccinium vitis-idaea 0·322 275 15
Angiosperm Ericales Polemoniaceae Phlox subulata 1·012 532 83
Angiosperm Ericales Primulaceae Glaux maritima 1·063 551 106
Angiosperm Ericales Primulaceae Primula veris 0·709 453 69
Angiosperm Ericales Styracaceae Styrax japonicus 0·132 179 86
Angiosperm Ericales Ternstroemiaceae Cleyera ochnacea 0·102 160 86
Angiosperm Ericales Ternstroemiaceae Ternstroemia japonica 0·122 174 86
Angiosperm Ericales Theaceae Camellia japonica 0·022 105 83, 86
Angiosperm Ericales Theaceae Camellia sasanqua 0·117 168 83, 86
Angiosperm Ericales Theaceae Eurya japonica 0·122 175 86
Angiosperm Ericales Theaceae Thea sinensis −0·025 72 23, 83
Angiosperm Fabales Fabaceae Albizia julibrissin 0·002 95 83
Angiosperm Fabales Fabaceae Alhagi mannifera 0·638 414 19
Angiosperm Fabales Fabaceae Cajanus cajan 1·577 633 8
Angiosperm Fabales Fabaceae Cercis canadensis 0·350 291 26
Angiosperm Fabales Fabaceae Desmodium uncinatum −0·433 35 85
Angiosperm Fabales Fabaceae Galega orientalis 0·108 164 87, 92
Angiosperm Fabales Fabaceae Gleditsia triacanthos 0·262 249 26
Angiosperm Fabales Fabaceae Glycine max 1·399 610 21, 22, 107, 108
Angiosperm Fabales Fabaceae Glycine wightii −0·483 34 85
Angiosperm Fabales Fabaceae Gymnocladus dioicus 0·360 295 26
Angiosperm Fabales Fabaceae Hedysarum americanum 0·250 239 6
Angiosperm Fabales Fabaceae Lathyrus ochroleucus 0·410 322 6
Angiosperm Fabales Fabaceae Lotus corniculatus −0·076 53 18, 36
Angiosperm Fabales Fabaceae Lupinus argenteus 0·450 341 6
Angiosperm Fabales Fabaceae Lupinus nanus 0·277 256 30, 32
Angiosperm Fabales Fabaceae Medicago sativa −0·228 42 5, 85, 93
Angiosperm Fabales Fabaceae Melilotus albus 0·704 447 19
Angiosperm Fabales Fabaceae Phaseolus atropurpureus −0·433 36 85
Angiosperm Fabales Fabaceae Phaseolus vulgaris 0·949 519 123, 124
Angiosperm Fabales Fabaceae Pisum sativum 0·276 254 65
Angiosperm Fabales Fabaceae Sophora flavescens −0·048 61 83
Angiosperm Fabales Fabaceae Sophora japonica −0·028 68 83
Angiosperm Fabales Fabaceae Trifolium fragiferum 0·626 405 19
Angiosperm Fabales Fabaceae Trifolium hybridum −0·152 44 36
Angiosperm Fabales Fabaceae Trifolium incarnatum 0·216 223 65
Angiosperm Fabales Fabaceae Trifolium pratense −0·028 71 30, 31, 32, 36, 85, 93
Angiosperm Fabales Fabaceae Trifolium repens −0·023 73 36, 90
Angiosperm Fabales Fabaceae Trifolium subterraneum 0·877 500 85
Angiosperm Fabales Fabaceae Vicia americana 0·240 234 6
Angiosperm Fabales Fabaceae Vicia villosa −0·043 64 23
Angiosperm Fabales Fabaceae Wisteria brachybotrys 0·142 182 83
Angiosperm Fagales Betulaceae Alnus viridis 0·364 297 15
Angiosperm Fagales Betulaceae Betula pendula 0·659 428 4
Angiosperm Fagales Betulaceae Carpinus caroliniana 0·547 373 26
Angiosperm Fagales Betulaceae Ostrya virginiana 0·402 317 26
Angiosperm Fagales Fagaceae Fagus sylvatica 6·089 732 2, 3, 28
Angiosperm Fagales Fagaceae Quercus alba 0·678 434 26
Angiosperm Fagales Fagaceae Quercus chapmanii 0·620 401 66
Angiosperm Fagales Fagaceae Quercus geminata 1·064 554 66
Angiosperm Fagales Fagaceae Quercus imbricaria 0·435 335 26
Angiosperm Fagales Fagaceae Quercus laevis 0·061 130 67
Angiosperm Fagales Fagaceae Quercus macrocarpa 0·463 349 26
Angiosperm Fagales Fagaceae Quercus muehlenbergii 0·528 366 26
Angiosperm Fagales Fagaceae Quercus myrtifolia 0·648 419 66
Angiosperm Fagales Fagaceae Quercus petraea 1·962 668 28
Angiosperm Fagales Fagaceae Quercus robur 1·542 625 4, 28
Angiosperm Fagales Fagaceae Quercus rubra 0·327 277 26
Angiosperm Fagales Fagaceae Quercus suber 0·242 235 83
Angiosperm Fagales Fagaceae Quercus velutina 0·318 269 26
Angiosperm Fagales Juglandaceae Carya cordiformis 0·379 303 26
Angiosperm Fagales Juglandaceae Carya laciniosa 0·407 320 26
Angiosperm Fagales Juglandaceae Carya ovata 0·472 354 26
Angiosperm Fagales Juglandaceae Carya tomentosa 0·425 331 26
Angiosperm Fagales Juglandaceae Juglans cinerea 0·481 357 26
Angiosperm Fagales Juglandaceae Juglans nigra 0·388 306 26
Angiosperm Fagales Myricaceae Myrica cerifera 0·149 187 75, 76
Angiosperm Garryales Aucubaceae Aucuba japonica 0·352 292 83, 86
Angiosperm Gentianales Apocynaceae Cynanchum acutum 0·629 407 19
Angiosperm Gentianales Apocynaceae Nerium oleander 0·416 325 19, 83
Angiosperm Gentianales Gentianaceae Gentiana decumbens 0·529 367 69
Angiosperm Gentianales Rubiaceae Coffea arabica 0·388 307 71
Angiosperm Gentianales Rubiaceae Galium elongatum 0·927 514 19
Angiosperm Gentianales Rubiaceae Galium mollugo 0·088 154 36
Angiosperm Gentianales Rubiaceae Gardenia jasminoides 0·122 176 86
Angiosperm Gentianales Rubiaceae Rubia tinctorum 0·402 315 83
Angiosperm Geraniales Geraniaceae Pelargonium graveolens 0·202 220 83
Angiosperm Lamiales Bignoniaceae Campsis grandiflora 0·042 118 83
Angiosperm Lamiales Bignoniaceae Catalpa ovata 0·262 245 83, 86
Angiosperm Lamiales Lamiaceae Ballota undulata 0·745 466 19
Angiosperm Lamiales Lamiaceae Betonica foliosa 0·879 501 69
Angiosperm Lamiales Lamiaceae Lavandula angustifolia 0·442 340 83
Angiosperm Lamiales Lamiaceae Lycopus europaeus 0·661 429 19
Angiosperm Lamiales Lamiaceae Melissa officinalis 1·084 557 19, 70
Angiosperm Lamiales Lamiaceae Mentha longifolia 0·726 461 19
Angiosperm Lamiales Lamiaceae Mentha piperita 1·220 583 70
Angiosperm Lamiales Lamiaceae Origanum vulgare 0·479 356 69
Angiosperm Lamiales Lamiaceae Plectranthus japonicus −0·028 69 83
Angiosperm Lamiales Lamiaceae Salvia officinalis 0·562 377 83
Angiosperm Lamiales Lamiaceae Thymus marschallianus 1·949 667 69
Angiosperm Lamiales Oleaceae Fraxinus americana 0·101 159 26, 125
Angiosperm Lamiales Oleaceae Fraxinus oxyphylla 0·684 437 19
Angiosperm Lamiales Oleaceae Ligustrum japonicum 0·192 213 86
Angiosperm Lamiales Oleaceae Ligustrum lucidum 0·172 196 86
Angiosperm Lamiales Oleaceae Olea europaea 0·032 110 83
Angiosperm Lamiales Oleaceae Osmanthus fragrans 0·192 212 86
Angiosperm Lamiales Paulowniaceae Paulownia tomentosa 0·432 332 86
Angiosperm Lamiales Plantaginaceae Plantago lagopus 0·818 482 19
Angiosperm Lamiales Plantaginaceae Plantago lanceolata 0·100 158 18
Angiosperm Lamiales Plantaginaceae Plantago maritima 0·467 352 20
Angiosperm Lamiales Scrophulariaceae Bacopa monnieri 0·752 467 75
Angiosperm Lamiales Scrophulariaceae Kickxia spuria 0·795 479 19
Angiosperm Lamiales Scrophulariaceae Melampyrum pratense 0·678 433 37, 41, 49
Angiosperm Lamiales Verbenaceae Verbena officinalis 0·573 379 19, 83
Angiosperm Lamiales Verbenaceae Vitex agnus-castus 0·819 484 19
Angiosperm Laurales Lauraceae Lindera benzoin 0·294 263 26
Angiosperm Laurales Lauraceae Lindera strychnifolia −0·008 84 83
Angiosperm Laurales Lauraceae Persea palustris 1·792 655 75
Angiosperm Laurales Lauraceae Sassafras albidum 0·290 259 26
Angiosperm Liliales Liliaceae Lilium leichtlinii 0·012 100 83
Angiosperm Liliales Liliaceae Tricyrtis hirta 0·142 183 83
Angiosperm Liliales Melanthiaceae Heloniopsis orientalis 0·012 101 83
Angiosperm Magnoliales Magnoliaceae Liriodendron tulipifera 0·682 436 86
Angiosperm Magnoliales Magnoliaceae Magnolia grandiflora 0·599 387 76, 83
Angiosperm Magnoliales Magnoliaceae Magnolia hypoleuca 0·622 402 86
Angiosperm Magnoliales Magnoliaceae Magnolia kobus 0·412 324 86
Angiosperm Malpighiales Euphorbiaceae Mallotus japonicus 0·382 304 83
Angiosperm Malpighiales Euphorbiaceae Mercurialis perennis 0·115 167 37, 45
Angiosperm Malpighiales Euphorbiaceae Securinega suffruticosa 0·092 155 83
Angiosperm Malpighiales Flacourtiaceae Idesia polycarpa 0·222 224 86
Angiosperm Malpighiales Linaceae Linum usitatissimum −0·327 37 93
Angiosperm Malpighiales Salicaceae Populus deltoides 0·696 444 26
Angiosperm Malpighiales Salicaceae Populus euphratica 0·715 456 19
Angiosperm Malpighiales Salicaceae Populus sieboldii 1·781 654 24
Angiosperm Malpighiales Salicaceae Populus tremuloides 0·100 157 6
Angiosperm Malpighiales Salicaceae Salix acmophylla 0·651 421 19
Angiosperm Malpighiales Salicaceae Salix matsudana 0·042 119 83
Angiosperm Malpighiales Violaceae Hybanthus glutinosus 0·172 199 83
Angiosperm Malpighiales Violaceae Viola tricolor 0·032 111 83
Angiosperm Malvales Malvaceae Gossypium hirsutum 0·962 522 16
Angiosperm Malvales Malvaceae Hibiscus cannabinus 0·407 319 8
Angiosperm Malvales Malvaceae Hibiscus moscheutos 1·029 537 79
Angiosperm Malvales Malvaceae Hibiscus sabdariffa 0·597 383 8
Angiosperm Malvales Malvaceae Hibiscus syriacus 0·082 151 83
Angiosperm Malvales Malvaceae Kosteletzkya virginica 0·932 517 74
Angiosperm Malvales Malvaceae Tilia americana 0·486 359 26
Angiosperm Malvales Thymelaeaceae Daphne odora 0·037 114 83, 86
Angiosperm Myrtales Lythraceae Lythrum lineare 0·632 410 74
Angiosperm Myrtales Lythraceae Lythrum salicaria 0·713 454 19
Angiosperm Myrtales Melastomataceae Melastoma candidum 0·082 152 83
Angiosperm Myrtales Melastomataceae Tibouchina pulchra −0·009 81 88
Angiosperm Myrtales Myrtaceae Callistemon rigidus −0·008 85 83
Angiosperm Myrtales Myrtaceae Eugenia uniflora 0·061 129 88
Angiosperm Myrtales Onagraceae Chamerion angustifolium 0·325 276 17
Angiosperm Myrtales Onagraceae Epilobium hirsutum 0·655 426 19
Angiosperm Myrtales Onagraceae Ludwigia stolonifera 0·618 398 19
Angiosperm Myrtales Onagraceae Oenothera lamarckiana −0·018 79 83
Angiosperm Pandanales Stemonaceae Stemona japonica 0·132 180 83
Angiosperm Piperales Saururaceae Houttuynia cordata 1·052 549 83
Angiosperm Piperales Saururaceae Saururus chinensis 0·182 205 83
Angiosperm Poales Cyperaceae Carex aquatilis −0·788 28 25
Angiosperm Poales Cyperaceae Carex atherodes 1·320 598 6
Angiosperm Poales Cyperaceae Carex biwensis 1·122 566 83
Angiosperm Poales Cyperaceae Carex cinica 2·442 690 83
Angiosperm Poales Cyperaceae Carex curvula 0·784 475 15
Angiosperm Poales Cyperaceae Carex dispalata 2·312 687 83
Angiosperm Poales Cyperaceae Carex filifolia 1·286 592 7, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
Angiosperm Poales Cyperaceae Carex flacca 0·890 504 18
Angiosperm Poales Cyperaceae Carex flavicans −0·298 38 25
Angiosperm Poales Cyperaceae Carex parciflora 1·632 640 83
Angiosperm Poales Cyperaceae Carex sempervirens 1·383 609 15
Angiosperm Poales Cyperaceae Carex subspathacea −0·068 56 25
Angiosperm Poales Cyperaceae Carex thunbergii 1·572 632 83
Angiosperm Poales Cyperaceae Cladium jamaicense 1·412 612 74
Angiosperm Poales Cyperaceae Cladium mariscus 1·503 619 19
Angiosperm Poales Cyperaceae Cyperus alopecuroides 0·788 477 19
Angiosperm Poales Cyperaceae Cyperus alternifolius 3·422 719 83
Angiosperm Poales Cyperaceae Cyperus latifolius 1·023 536 19
Angiosperm Poales Cyperaceae Cyperus michelianus 1·043 545 19
Angiosperm Poales Cyperaceae Cyperus microiria 0·812 480 83
Angiosperm Poales Cyperaceae Cyperus papyrus 1·068 555 19, 71, 83
Angiosperm Poales Cyperaceae Cyperus polystachyos 1·149 576 79
Angiosperm Poales Cyperaceae Cyperus surinamensis 1·379 607 79
Angiosperm Poales Cyperaceae Eleocharis cellulosa 1·562 630 74
Angiosperm Poales Cyperaceae Eleocharis parvula 3·182 713 74
Angiosperm Poales Cyperaceae Eleocharis uniglumis 6·663 733 106
Angiosperm Poales Cyperaceae Fimbristylis spadicea 1·095 560 75, 77
Angiosperm Poales Cyperaceae Rhynchospora plumosa 2·307 686 82
Angiosperm Poales Cyperaceae Scirpus americanus 1·609 639 79
Angiosperm Poales Cyperaceae Scirpus cyperinus 2·057 674 82
Angiosperm Poales Cyperaceae Scirpus olneyi 0·998 529 77
Angiosperm Poales Cyperaceae Scirpus robustus 2·248 683 77
Angiosperm Poales Cyperaceae Scirpus tabernaemontani 0·112 165 83
Angiosperm Poales Cyperaceae Scirpus validus 1·147 575 73
Angiosperm Poales Juncaceae Juncus effusus 0·502 363 83
Angiosperm Poales Juncaceae Juncus gerardii 1·063 552 106
Angiosperm Poales Juncaceae Juncus polycephalus 0·369 300 79
Angiosperm Poales Juncaceae Juncus roemerianus 0·190 211 75, 77
Angiosperm Poales Juncaceae Luzula luzuloides 0·451 342 37, 44, 49
Angiosperm Poales Poaceae Achnatherum hymenoides 1·600 637 12, 13
Angiosperm Poales Poaceae Aegilops squarrosa 2·012 672 83
Angiosperm Poales Poaceae Agropyron cristatum 0·973 526 7
Angiosperm Poales Poaceae Agropyron dasystachyum 0·900 505 6
Angiosperm Poales Poaceae Agropyron repens 1·118 564 36
Angiosperm Poales Poaceae Agropyron smithii 1·187 580 6, 7
Angiosperm Poales Poaceae Agropyron subsecundum 1·090 559 6
Angiosperm Poales Poaceae Agropyron trichophorum 1·143 573 7
Angiosperm Poales Poaceae Agrostis alba 2·132 678 14
Angiosperm Poales Poaceae Agrostis gigantea 3·358 717 36
Angiosperm Poales Poaceae Agrostis palustris 1·055 550 1
Angiosperm Poales Poaceae Agrostis scabra 0·268 251 36
Angiosperm Poales Poaceae Agrostis stolonifera 4·563 729 106
Angiosperm Poales Poaceae Agrostis tenuis 1·034 542 14, 37, 47
Angiosperm Poales Poaceae Andropogon gerardii 1·409 611 27, 80
Angiosperm Poales Poaceae Andropogon scoparius 3·852 722 80
Angiosperm Poales Poaceae Anthoxanthum odoratum 0·613 393 17, 18
Angiosperm Poales Poaceae Aristida stricta 1·038 544 67
Angiosperm Poales Poaceae Arrhenatherum elatius 0·880 502 18
Angiosperm Poales Poaceae Arundinaria gigantea 8·769 735 79
Angiosperm Poales Poaceae Arundo donax 1·454 614 8, 83
Angiosperm Poales Poaceae Avena sativa 1·513 622 5, 29, 30, 65, 83, 85, 93, 94, 95, 96
Angiosperm Poales Poaceae Bouteloua curtipendula 1·714 647 97
Angiosperm Poales Poaceae Bouteloua gracilis 1·144 574 7, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97
Angiosperm Poales Poaceae Bouteloua hirsuta 2·194 680 97
Angiosperm Poales Poaceae Brachypodium pinnatum 0·960 521 18
Angiosperm Poales Poaceae Brachypodium sylvaticum 3·105 712 37, 45, 47, 51
Angiosperm Poales Poaceae Briza media 0·880 503 18
Angiosperm Poales Poaceae Bromus inermis 1·303 595 6, 36, 91
Angiosperm Poales Poaceae Bromus pumpellianus 0·920 513 6
Angiosperm Poales Poaceae Bromus tectorum 1·475 615 12, 13, 91
Angiosperm Poales Poaceae Calamagrostis canadensis 1·768 652 36
Angiosperm Poales Poaceae Calamagrostis epigejos 2·249 684 37, 38, 45, 48
Angiosperm Poales Poaceae Calamagrostis inexpansa 1·830 658 6
Angiosperm Poales Poaceae Calamagrostis rubescens 1·590 634 6
Angiosperm Poales Poaceae Calamagrostis villosa 2·689 702 15, 37, 44, 45
Angiosperm Poales Poaceae Cenchrus longispinus 1·382 608 81
Angiosperm Poales Poaceae Chasmanthium latifolium 4·127 725 82
Angiosperm Poales Poaceae Chasmanthium sessiliflorum 0·707 448 82
Angiosperm Poales Poaceae Cornucopiae cucullatum 0·931 516 Aegilopssquarrosa
Angiosperm Poales Poaceae Cortaderia selloana 0·579 382 82, 83
Angiosperm Poales Poaceae Ctenium aromaticum 3·039 710 79
Angiosperm Poales Poaceae Cymbopogon citratus 0·752 468 83
Angiosperm Poales Poaceae Cynodon dactylon 1·509 621 1, 14, 72, 98, 99, 100, 101, 102
Angiosperm Poales Poaceae Dactylis glomerata 0·600 389 18
Angiosperm Poales Poaceae Danthonia intermedia 1·490 617 6
Angiosperm Poales Poaceae Danthonia parryi 1·270 588 6
Angiosperm Poales Poaceae Deschampsia cespitosa 1·377 605 6, 37, 42, 44, 47, 54, 55
Angiosperm Poales Poaceae Deschampsia flexuosa 0·628 406 17, 37, 40, 43, 44, 46, 49, 50
Angiosperm Poales Poaceae Digitaria decumbens 0·457 348 85
Angiosperm Poales Poaceae Digitaria ischaemum 2·762 705 14
Angiosperm Poales Poaceae Distichlis spicata 1·598 635 73, 77
Angiosperm Poales Poaceae Echinochloa colona 0·850 495 19
Angiosperm Poales Poaceae Echinochloa crus-galli 1·377 606 75, 81
Angiosperm Poales Poaceae Ehrharta erecta 0·785 476 1
Angiosperm Poales Poaceae Elymus cinereus 1·030 539 6
Angiosperm Poales Poaceae Elymus elymoides 1·325 600 12, 13
Angiosperm Poales Poaceae Elymus innovatus 1·050 548 6
Angiosperm Poales Poaceae Elymus junceus 1·177 578 6, 7
Angiosperm Poales Poaceae Elymus mollis 0·852 496 83
Angiosperm Poales Poaceae Elymus virginicus 2·369 688 79
Angiosperm Poales Poaceae Elytrigia atherica 1·947 666 20
Angiosperm Poales Poaceae Eragrostis curvula 0·827 485 8
Angiosperm Poales Poaceae Festuca arundinacea 1·308 596 14, 19, 87, 92, 98, 99, 100, 101, 102, 104, 105
Angiosperm Poales Poaceae Festuca gigantea 2·264 685 37, 42, 45
Angiosperm Poales Poaceae Festuca halleri 1·845 660 15
Angiosperm Poales Poaceae Festuca idahoensis 1·730 649 6
Angiosperm Poales Poaceae Festuca ovina 0·643 416 17, 18
Angiosperm Poales Poaceae Festuca pratensis 1·043 546 87, 92, 104, 105
Angiosperm Poales Poaceae Festuca puccinellii 1·687 645 15
Angiosperm Poales Poaceae Festuca rubra 1·113 563 1, 6, 14, 20, 25
Angiosperm Poales Poaceae Festuca scabrella 1·288 593 6, 54, 55
Angiosperm Poales Poaceae Festuca scabriculmis 1·481 616 15
Angiosperm Poales Poaceae Festuca sylvatica 2·919 708 2
Angiosperm Poales Poaceae Helictotrichon pratense 0·908 509 17, 18
Angiosperm Poales Poaceae Hilaria jamesii 1·494 618 97
Angiosperm Poales Poaceae Hilaria rigida 1·809 656 123, 124
Angiosperm Poales Poaceae Holcus lanatus 0·860 497 18
Angiosperm Poales Poaceae Hordeum vulgare 1·824 657 9, 29, 30, 85, 93, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124
Angiosperm Poales Poaceae Imperata cylindrica 1·137 571 82
Angiosperm Poales Poaceae Koeleria cristata 1·063 553 7
Angiosperm Poales Poaceae Lolium perenne 3·644 721 14, 89
Angiosperm Poales Poaceae Lolium rigidum 0·970 525 30, 31, 31, 65
Angiosperm Poales Poaceae Lycurus phleoides 1·014 533 97
Angiosperm Poales Poaceae Manisuris rugosa 3·623 720 78
Angiosperm Poales Poaceae Melica uniflora 1·844 659 37
Angiosperm Poales Poaceae Melinis minutiflora 0·457 347 85
Angiosperm Poales Poaceae Miscanthus sinensis 2·862 706 83
Angiosperm Poales Poaceae Molinia caerulea 1·167 577 38, 39, 48
Angiosperm Poales Poaceae Muhlenbergia richardsonis 2·504 693 97
Angiosperm Poales Poaceae Nardus stricta 1·551 628 15
Angiosperm Poales Poaceae Oryza sativa 4·167 726 83, 85, 107, 108, 109, 110
Angiosperm Poales Poaceae Oryzopsis asperifolia 1·118 565 36
Angiosperm Poales Poaceae Panicum amarum 0·833 490 78
Angiosperm Poales Poaceae Panicum commutatum 4·227 727 82
Angiosperm Poales Poaceae Panicum maximum 0·547 374 85
Angiosperm Poales Poaceae Panicum obtusum 1·134 570 97
Angiosperm Poales Poaceae Panicum repens 1·030 538 78, 82
Angiosperm Poales Poaceae Panicum texanum 8·027 734 8
Angiosperm Poales Poaceae Panicum virgatum 2·012 671 8, 27, 74, 80
Angiosperm Poales Poaceae Paspalum dilatatum 1·655 643 1
Angiosperm Poales Poaceae Paspalum urvillei 2·062 675 81
Angiosperm Poales Poaceae Paspalum vaginatum 0·688 439 19
Angiosperm Poales Poaceae Paspalum wettsteinii 0·597 386 85
Angiosperm Poales Poaceae Pennisetum clandestinum 0·939 518 1, 88
Angiosperm Poales Poaceae Phalaris arundinacea 2·521 695 87
Angiosperm Poales Poaceae Phalaris tuberosa 1·667 644 85
Angiosperm Poales Poaceae Phleum pratense 0·837 494 6, 36, 93
Angiosperm Poales Poaceae Phragmites australis 0·978 527 19
Angiosperm Poales Poaceae Phragmites communis 2·739 703 79
Angiosperm Poales Poaceae Pleioblastus chino 5·072 730 83
Angiosperm Poales Poaceae Poa chaixii 0·474 355 37, 51
Angiosperm Poales Poaceae Poa compressa 0·648 420 36
Angiosperm Poales Poaceae Poa pratensis 1·543 626 14, 98, 99, 100, 101, 102, 103
Angiosperm Poales Poaceae Poa secunda 1·343 602 7
Angiosperm Poales Poaceae Puccinellia maritima 0·597 384 20
Angiosperm Poales Poaceae Puccinellia phryganodes −0·978 25 25
Angiosperm Poales Poaceae Saccharum officinarum 1·509 620 79, 83, 107, 108
Angiosperm Poales Poaceae Sasa nipponica 3·234 714 24, 83
Angiosperm Poales Poaceae Secale cereale 1·256 586 29, 65, 83, 91, 93
Angiosperm Poales Poaceae Setaria geniculata 1·652 642 81
Angiosperm Poales Poaceae Setaria italica 0·916 512 10, 11
Angiosperm Poales Poaceae Setaria magna 3·337 716 82
Angiosperm Poales Poaceae Setaria sphacelata −0·103 46 85
Angiosperm Poales Poaceae Sorghastrum nutans 1·999 670 27, 80
Angiosperm Poales Poaceae Sorghum bicolor 1·539 624 10, 11, 21, 22
Angiosperm Poales Poaceae Sorghum halepense 0·999 531 79
Angiosperm Poales Poaceae Spartina alterniflora 0·653 425 73, 77
Angiosperm Poales Poaceae Spartina anglica 1·567 631 20
Angiosperm Poales Poaceae Spartina cynosuroides 1·129 569 74, 82
Angiosperm Poales Poaceae Spartina patens 0·780 474 74, 77
Angiosperm Poales Poaceae Sporobolus cryptandrus 0·714 455 97
Angiosperm Poales Poaceae Stipa comata 0·697 445 7, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 80
Angiosperm Poales Poaceae Stipa richardsonii 1·280 591 6
Angiosperm Poales Poaceae Stipa spartea 1·321 599 6, 80
Angiosperm Poales Poaceae Stipa viridula 1·640 641 6
Angiosperm Poales Poaceae Trichachne californica 1·527 623 8
Angiosperm Poales Poaceae Tripsacum dactyloides 0·903 507 78
Angiosperm Poales Poaceae Triticosecale spp. 0·131 178 9
Angiosperm Poales Poaceae Triticum aestivum 2·455 692 9, 16, 29, 83, 85, 89, 91, 93, 94, 95, 96, 107, 108, 109, 110
Angiosperm Poales Poaceae Triticum boeoticum 2·512 694 83
Angiosperm Poales Poaceae Triticum dicoccoides 1·232 584 83
Angiosperm Poales Poaceae Triticum percicumx 1·602 638 83
Angiosperm Poales Poaceae Uniola paniculata 0·836 491 78, 79
Angiosperm Poales Poaceae Zea mays 0·827 486 21, 22, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122
Angiosperm Poales Poaceae Zizania aquatica 2·625 698 73, 78
Angiosperm Poales Poaceae Zizaniopsis miliacea 3·913 723 78
Angiosperm Poales Poaceae Zoysia japonica 0·312 267 14
Angiosperm Poales Typhaceae Typha angustata 0·651 422 19
Angiosperm Poales Typhaceae Typha angustifolia 0·222 226 75
Angiosperm Proteales Platanaceae Platanus occidentalis 0·453 344 26
Angiosperm Ranunculales Berberidaceae Epimedium grandiflorum 0·292 262 83
Angiosperm Ranunculales Berberidaceae Nandina domestica 0·067 139 83, 86
Angiosperm Ranunculales Papaveraceae Papaver bracteatum 0·652 423 83
Angiosperm Ranunculales Papaveraceae Papaver rhoeas 0·482 358 83
Angiosperm Ranunculales Ranunculaceae Aconitum japonicum 0·252 241 83
Angiosperm Ranunculales Ranunculaceae Aconitum loczyanum 0·222 228 83
Angiosperm Ranunculales Ranunculaceae Aquilegia flabellata −0·048 62 83
Angiosperm Ranunculales Ranunculaceae Eranthis giganteus 1·939 665 79
Angiosperm Ranunculales Ranunculaceae Pulsatilla multifida 0·679 435 69
Angiosperm Ranunculales Ranunculaceae Ranunculus japonicus 0·262 246 83
Angiosperm Rosales Cannabaceae Cannabis sativa −0·285 39 93
Angiosperm Rosales Celtidaceae Celtis occidentalis 2·652 700 26, 125
Angiosperm Rosales Elaeagnaceae Hippophae rhamnoides 2·079 676 69
Angiosperm Rosales Elaeagnaceae Elaeagnus multiflora 0·062 135 83
Angiosperm Rosales Moraceae Ficus lyrata 1·728 648 71
Angiosperm Rosales Moraceae Maclura pomifera 0·818 483 26
Angiosperm Rosales Moraceae Morus alba 0·552 375 83
Angiosperm Rosales Moraceae Morus rubra 1·884 662 26, 79
Angiosperm Rosales Rosaceae Aronia melanocarpa 1·179 579 69
Angiosperm Rosales Rosaceae Chaenomeles sinensis 0·192 214 83
Angiosperm Rosales Rosaceae Crataegus cuneata 0·012 102 83
Angiosperm Rosales Rosaceae Fallugia paradoxa 0·457 345 8
Angiosperm Rosales Rosaceae Kerria japonica 0·232 233 83
Angiosperm Rosales Rosaceae Potentilla erecta 0·909 511 69
Angiosperm Rosales Rosaceae Potentilla fruticosa 0·120 172 6
Angiosperm Rosales Rosaceae Prunus serotina 0·276 255 26
Angiosperm Rosales Rosaceae Prunus virginiana 0·500 362 26
Angiosperm Rosales Rosaceae Pyracantha crenulata −0·008 86 83
Angiosperm Rosales Rosaceae Rosa woodsii 0·290 258 6
Angiosperm Rosales Rosaceae Rubus idaeus 0·067 140 37, 42, 44, 45, 47
Angiosperm Rosales Rosaceae Spiraea thunbergii 0·062 136 83
Angiosperm Rosales Ulmaceae Ulmus americana 2·038 673 26, 72
Angiosperm Rosales Ulmaceae Ulmus rubra 1·257 587 26
Angiosperm Rosales Urticaceae Urtica dioica 1·335 601 17, 37, 42, 45, 47
Angiosperm Rosales Urticaceae Urtica hulensis 0·690 441 19
Angiosperm Santalales Loranthaceae Struthanthus marginatus 0·104 162 88
Angiosperm Sapindales Meliaceae Guarea macrophylla 0·071 144 88
Angiosperm Sapindales Meliaceae Melia azedarach 0·172 200 83
Angiosperm Sapindales Rutaceae Phellodendron amurense 0·302 264 83
Angiosperm Sapindales Rutaceae Poncirus trifoliata 0·392 309 83
Angiosperm Sapindales Rutaceae Zanthoxylum americanum 0·463 350 26
Angiosperm Sapindales Rutaceae Zanthoxylum piperitum 0·262 247 83
Angiosperm Sapindales Sapindaceae Acer ginnala 0·432 334 83
Angiosperm Sapindales Sapindaceae Acer negundo 0·416 326 26
Angiosperm Sapindales Sapindaceae Acer rubrum 0·902 506 75
Angiosperm Sapindales Sapindaceae Acer saccharinum 0·715 457 26
Angiosperm Sapindales Sapindaceae Acer saccharum 1·124 567 26, 83
Angiosperm Sapindales Sapindaceae Aesculus pavia 0·186 208 76
Angiosperm Sapindales Sapindaceae Cupania oblongifolia 0·106 163 88
Angiosperm Saxifragales Cercidiphyllaceae Cercidiphyllum japonicum 0·597 385 83, 86
Angiosperm Saxifragales Crassulaceae Kalanchöe braziliensis 0·009 98 88
Angiosperm Saxifragales Crassulaceae Rhodiola linearifolia 2·679 701 69
Angiosperm Saxifragales Crassulaceae Sedum hybridum 3·329 715 69
Angiosperm Saxifragales Hamamelidaceae Corylopsis pauciflora 0·142 181 86
Angiosperm Solanales Convolvulaceae Calystegia japonica −0·078 51 83
Angiosperm Solanales Convolvulaceae Calystegia sepium 0·617 396 19
Angiosperm Solanales Convolvulaceae Cuscuta planiflora 0·633 411 19
Angiosperm Solanales Convolvulaceae Cuscuta racemosa −0·006 88 88
Angiosperm Solanales Convolvulaceae Ipomoea sagittata 0·532 369 74
Angiosperm Solanales Solanaceae Atropa belladonna −0·068 55 83
Angiosperm Solanales Solanaceae Capsicum annuum −0·003 89 103
Angiosperm Solanales Solanaceae Lycopersicon esculentum 1·545 627 109, 110
Angiosperm Solanales Solanaceae Physalis alkekengi 0·002 96 83
Angiosperm Solanales Solanaceae Solanum americanum 0·145 186 88
Angiosperm Solanales Solanaceae Solanum nigrum 0·637 413 19
Angiosperm unassigned to order Boraginaceae Echium angustifolium 1·086 558 19
Angiosperm unassigned to order Boraginaceae Heliotropium supinum 0·766 470 19
Angiosperm unassigned to order Bromeliaceae Ananas comosus 0·142 184 83
Angiosperm unassigned to order Bromeliaceae Tillandsia usneoides 0·256 242 76
Angiosperm unassigned to order Celastraceae Euonymus japonicus 0·152 190 86
Angiosperm unassigned to order Nymphaeaceae Nuphar lutea 0·685 438 19
Angiosperm unassigned to order Schisandraceae Schisandra chinensis 1·209 582 69
Angiosperm unassigned to order Staphyleaceae Staphylea trifolia 0·397 313 26
Angiosperm unassigned to order Vitaceae Vitis aestivalis 0·206 222 76
Angiosperm Zingiberales Cannaceae Canna indica 0·262 248 83
Angiosperm Zingiberales Musaceae Musa basjoo 0·982 528 83
Angiosperm Zingiberales Zingiberaceae Renealmia petasites 0·402 316 88
Angiosperm Zingiberales Zingiberaceae Zingiber mioga 0·122 177 83
Bryophyta (mosses) Sphagnales Sphagnaceae Sphagnum cymbifolium 1·272 589 83
Equisetophyta Equisetales Equisetaceae Equisetum arvense 3·992 724 83, 84
Equisetophyta Equisetales Equisetaceae Equisetum hyemale 2·917 707 83, 84
Gymnosperm Cycadales Cycadaceae Cycas revoluta −0·028 70 83
Gymnosperm Ephedrales Ephedraceae Ephedra sinica −0·078 52 83
Gymnosperm Ginkgoales Ginkgoaceae Ginkgo biloba −0·048 63 83
Gymnosperm Pinales Araucariaceae Araucaria araucana 0·403 318 35
Gymnosperm Pinales Cupressaceae Chamaecyparis lawsoniana 0·871 499 35
Gymnosperm Pinales Cupressaceae Chamaecyparis obtusa 0·269 252 35, 83
Gymnosperm Pinales Cupressaceae Chamaecyparis pisifera 0·375 302 35
Gymnosperm Pinales Cupressaceae Chamaecyparis thyoides 0·929 515 79
Gymnosperm Pinales Cupressaceae Cupressocyparis leylandii 0·815 481 35
Gymnosperm Pinales Cupressaceae Cupressus sempervirens 0·002 97 83
Gymnosperm Pinales Cupressaceae Juniperus communis 0·025 107 35
Gymnosperm Pinales Cupressaceae Juniperus nana 0·340 279 15
Gymnosperm Pinales Cupressaceae Juniperus virginiana 0·096 156 76
Gymnosperm Pinales Cupressaceae Thuja orientalis 0·068 142 35, 83
Gymnosperm Pinales Pinaceae Abies alba 0·340 280 15
Gymnosperm Pinales Pinaceae Abies balsamea 0·198 217 68
Gymnosperm Pinales Pinaceae Abies fraseri 0·173 201 68
Gymnosperm Pinales Pinaceae Abies grandis 0·399 314 35
Gymnosperm Pinales Pinaceae Abies mariesii 0·062 137 35
Gymnosperm Pinales Pinaceae Abies nordmanniana 0·188 209 35
Gymnosperm Pinales Pinaceae Abies pectinata 4·512 728 2, 3
Gymnosperm Pinales Pinaceae Abies procera 0·441 336 35
Gymnosperm Pinales Pinaceae Cedrus atlantica 0·048 121 35
Gymnosperm Pinales Pinaceae Larix decidua 0·869 498 15, 35, 68
Gymnosperm Pinales Pinaceae Larix laricina 0·224 229 68
Gymnosperm Pinales Pinaceae Picea abies 1·363 604 15, 28, 35
Gymnosperm Pinales Pinaceae Picea glauca 0·533 370 33, 34, 68
Gymnosperm Pinales Pinaceae Picea mariana 0·192 215 68
Gymnosperm Pinales Pinaceae Picea orientalis 1·016 534 35
Gymnosperm Pinales Pinaceae Picea rubens 0·316 268 68
Gymnosperm Pinales Pinaceae Pinus armandii 0·198 216 35
Gymnosperm Pinales Pinaceae Pinus banksiana 0·199 218 68
Gymnosperm Pinales Pinaceae Pinus cembra 0·364 298 15
Gymnosperm Pinales Pinaceae Pinus clausa 0·643 417 66
Gymnosperm Pinales Pinaceae Pinus contorta 0·057 128 35
Gymnosperm Pinales Pinaceae Pinus cooperi 0·347 287 35
Gymnosperm Pinales Pinaceae Pinus flexilis 0·067 141 35
Gymnosperm Pinales Pinaceae Pinus jeffreyi 0·020 104 35
Gymnosperm Pinales Pinaceae Pinus koraiensis 0·202 221 35
Gymnosperm Pinales Pinaceae Pinus luchuensis −0·018 80 83
Gymnosperm Pinales Pinaceae Pinus mugo 0·350 289 15
Gymnosperm Pinales Pinaceae Pinus palustris 0·310 266 67, 83
Gymnosperm Pinales Pinaceae Pinus parviflora 0·118 169 35
Gymnosperm Pinales Pinaceae Pinus peuce 0·048 122 35
Gymnosperm Pinales Pinaceae Pinus pinea 0·011 99 35
Gymnosperm Pinales Pinaceae Pinus resinosa 0·152 193 68
Gymnosperm Pinales Pinaceae Pinus strobiformis 0·034 112 35
Gymnosperm Pinales Pinaceae Pinus strobus 0·119 170 33, 34, 35, 68
Gymnosperm Pinales Pinaceae Pinus sylvestris 0·261 244 3, 4, 28, 35, 68
Gymnosperm Pinales Pinaceae Pseudolarix amabilis 0·034 113 35
Gymnosperm Pinales Pinaceae Pseudotsuga flauhauti 0·184 207 35
Gymnosperm Pinales Pinaceae Pseudotsuga macrolepis 0·908 510 35
Gymnosperm Pinales Pinaceae Pseudotsuga menziesii 0·319 270 35, 68
Gymnosperm Pinales Pinaceae Tsuga canadensis 0·159 195 35, 68
Gymnosperm Pinales Pinaceae Tsuga caroliniana 0·178 202 68
Gymnosperm Pinales Pinaceae Tsuga diversifolia 0·385 305 35
Gymnosperm Pinales Pinaceae Tsuga heterophylla 0·114 166 35
Gymnosperm Pinales Podocarpaceae Podocarpus neriifolius 0·368 299 71
Gymnosperm Pinales Taxodiaceae Cryptomeria japonica 0·066 138 35, 83
Gymnosperm Pinales Taxodiaceae Cunninghamia lanceolata −0·002 90 35, 83
Gymnosperm Pinales Taxodiaceae Sequoia sempervirens 0·142 185 83
Gymnosperm Pinales Taxodiaceae Sequoiadendron giganteum 0·188 210 35
Gymnosperm Pinales Taxodiaceae Taxodium distichum 0·043 120 35
Gymnosperm Pinales Taxodiaceae Taxodium japonicum 1·557 629 24
Gymnosperm Taxales Taxaceae Taxus baccata 0·083 153 35
Gymnosperm Taxales Taxaceae Taxus cuspidata 0·244 237 35
Gymnosperm Taxales Taxaceae Torreya nucifera 0·012 103 83
Lycopodiophyta (clubmosses) Lycopodiales Lycopodiaceae Lycopodium carolinianum 1·033 541 78
Lycopodiophyta (clubmosses) Lycopodiales Lycopodiaceae Lycopodium clavatum 0·542 372 83
Lycopodiophyta (clubmosses) Selaginellales Selaginellaceae Selaginella caulescens 1·967 669 83, 84
Lycopodiophyta (clubmosses) Selaginellales Selaginellaceae Selaginella involvens 2·117 677 83, 84
Lycopodiophyta (clubmosses) Selaginellales Selaginellaceae Selaginella uncinata 1·742 651 83
Marchantiophyta (liverworts) Marchantiales Marchantiaceae Marchantia polymorpha 5·452 731 83
Polypodiophyta (true ferns) Aspleniales Aspleniaceae Asplenium cuneifolium 0·053 126 52
Polypodiophyta (true ferns) Aspleniales Aspleniaceae Asplenium trichomanes −0·008 87 83
Polypodiophyta (true ferns) Aspleniales Blechnaceae Blechnum amabile 0·832 489 83
Polypodiophyta (true ferns) Aspleniales Blechnaceae Blechnum spicant 2·418 689 52, 53
Polypodiophyta (true ferns) Aspleniales Blechnaceae Woodwardia orientalis 0·181 203 84
Polypodiophyta (true ferns) Aspleniales Davalliaceae Davallia mariesii −1·709 20 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Acrophorus stipellatus −1·039 24 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Cyrtomium falcatum −2·039 5 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Cyrtomium fortunei −1·939 11 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Dryopteris bissetiana −2·109 2 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Dryopteris carthusiana 0·183 206 52, 53
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Dryopteris crassirhizoma −2·029 6 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Dryopteris erythrosora −1·959 9 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Dryopteris filix-mas 0·070 143 37, 38, 42, 44, 45, 47, 52, 53
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Dryopteris lacera −1·979 7 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Dryopteris sieboldii −1·899 14 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Dryopteris uniformis −1·929 12 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Polystichopsis amabilis −1·839 18 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Polystichopsis pseudo-aristata −1·879 16 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Polystichopsis standishii −1·959 10 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Polystichum lepidocaulon −2·109 3 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Polystichum polyblepharum −2·099 4 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Polystichum pseudo-makinoi −1·799 19 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Polystichum tripteron −1·979 8 84
Polypodiophyta (true ferns) Aspleniales Dryopteridaceae Ctenitis subglandulosa −1·679 21 84
Polypodiophyta (true ferns) Aspleniales Oleandraceae Nephrolepis cordifolia −1·899 15 84
Polypodiophyta (true ferns) Aspleniales Thelypteridaceae Cyclosorus acuminatus 1·101 561 84
Polypodiophyta (true ferns) Aspleniales Thelypteridaceae Cyclosorus dentatus 2·941 709 84
Polypodiophyta (true ferns) Aspleniales Thelypteridaceae Lastrea limbosperma 0·968 524 52, 53
Polypodiophyta (true ferns) Aspleniales Thelypteridaceae Lastrea oligophlebia −0·949 26 84
Polypodiophyta (true ferns) Aspleniales Thelypteridaceae Leptogramma mollissima 0·831 488 84
Polypodiophyta (true ferns) Aspleniales Thelypteridaceae Phegopteris connectilis 2·643 699 52
Polypodiophyta (true ferns) Aspleniales Woodsiaceae Athyrium filix-femina 1·352 603 37, 42, 44, 45, 47, 52, 53
Polypodiophyta (true ferns) Aspleniales Woodsiaceae Athyrium japonicum −0·949 27 84
Polypodiophyta (true ferns) Aspleniales Woodsiaceae Athyrium lobato-crenatum −0·259 41 84
Polypodiophyta (true ferns) Aspleniales Woodsiaceae Athyrium niponicum −1·199 22 84
Polypodiophyta (true ferns) Aspleniales Woodsiaceae Athyrium yokoscense −0·739 29 84
Polypodiophyta (true ferns) Aspleniales Woodsiaceae Diplazium hachijoense 2·221 681 84
Polypodiophyta (true ferns) Aspleniales Woodsiaceae Diplazium wichurae −0·499 33 84
Polypodiophyta (true ferns) Aspleniales Woodsiaceae Gymnocarpium dryopteris 2·153 679 52
Polypodiophyta (true ferns) Aspleniales Woodsiaceae Matteuccia struthiopteris 1·933 664 52, 53
Polypodiophyta (true ferns) Aspleniales Woodsiaceae Struthiopteris niponica 3·072 711 83
Polypodiophyta (true ferns) Aspleniales Woodsiaceae Onoclea sensibilis −0·629 30 84
Polypodiophyta (true ferns) Gleicheniales Gleicheniaceae Gleichenia glauca 0·692 442 83
Polypodiophyta (true ferns) Marattiales Marattiaceae Angiopteris lygodiifolia −0·509 32 84
Polypodiophyta (true ferns) Osmundales Osmundaceae Osmunda cinnamomea 0·953 520 53
Polypodiophyta (true ferns) Osmundales Osmundaceae Osmunda gracilis 1·137 572 53, 74
Polypodiophyta (true ferns) Osmundales Osmundaceae Osmunda japonica 3·421 718 84
Polypodiophyta (true ferns) Osmundales Osmundaceae Osmunda lancea 0·251 240 84
Polypodiophyta (true ferns) Parkeriales Adiantaceae Adiantum pedatum 0·232 232 83, 84
Polypodiophyta (true ferns) Parkeriales Dennstaedtiaceae Dennstaedtia scabra −0·269 40 84
Polypodiophyta (true ferns) Parkeriales Dennstaedtiaceae Pteridium aquilinum 1·299 594 37, 39, 41, 48, 52, 53, 84
Polypodiophyta (true ferns) Parkeriales Pteridaceae Pteris ensiformis −0·539 31 84
Polypodiophyta (true ferns) Polypodiales Polypodiaceae Colysis decurrens −1·869 17 84
Polypodiophyta (true ferns) Polypodiales Polypodiaceae Colysis wrightii −2·139 1 84
Polypodiophyta (true ferns) Polypodiales Polypodiaceae Loxogramme saziran 0·022 106 83
Polypodiophyta (true ferns) Polypodiales Polypodiaceae Polypodium vulgare 0·153 194 52, 53
Polypodiophyta (true ferns) Polypodiales Polypodiaceae Pyrrosia lingua −1·089 23 83, 84
Polypodiophyta (true ferns) Schizaeales Schizaeaceae Lygodium japonicum 1·102 562 83

Data are from 125 studies, contained in 54 papers in the primary literature, in which Si concentrations of leaf or non-woody shoot tissue were reported. Each study included at least two plant species growing in the same environment, and each study contained at least one species in common with another study. A residual maximum likelihood procedure was performed on the 1066 linked data to estimate the mean relative shoot Si concentration of species, adjusted for differences between studies.

Table 2.

Variance components model of shoot Si concentrations, based on a meta-analysis of primary data from 125 studies, contained in 54 papers in the primary literature, in which Si concentrations of leaf or non-woody shoot tissue were reported

Variance component
Variance
s.e.
% of total variance
Study 0·815 0·128 16·0
Group 3·409 2·204 66·9
Group/order 0·019 0·032 0·4
Group/order/family 0·127 0·044 2·5
Group/order/family/genus 0·102 0·039 2·0
Group/order/family/genus/species 0·072 0·044 1·4
Residual variance model 0·550 0·040 10·8

Each study included at least two plant species growing in the same environment, and each study contained at least one species in common with another study.

Across all plant species, relative shoot Si concentration varied from −2·139 in Colysis wrightii (Polypodiaceae) to 8·769 in Arundinaria gigantea (Poaceae); the mean was 0·722 (Table 1 and Fig. 1). Negative relative shoot Si concentration values can arise as a consequence of adjusting for between-study variation during REML fitting procedures. Mean relative shoot Si concentrations of some fern species from the study of Ma and Takahashi (2002) formed a distinct distribution peak in the low relative shoot Si concentration range (Fig. 1, inset). However, since the mean relative shoot Si concentrations adjusted for differences between studies using the REML procedure corresponded closely to the arithmetic mean shoot Si concentration across all studies (Fig. 2), and since there was a minimal ‘study’ variance component (Table 2), data from Ma and Takahashi (2002) were retained in subsequent analyses.

Fig. 1.

Fig. 1.

Ranked mean relative shoot Si concentration in 735 species of plants based on data from 125 independent studies in 54 papers in the primary literature. A residual maximum likelihood (REML) procedure was used to adjust for differences in shoot Si concentration between studies. Data are ranked and presented as a frequency distribution (inset). Species names and study references are given in Table 1 and the Appendix.

Fig. 2.

Fig. 2.

The arithmetic mean shoot Si concentration as a function of mean relative shoot Si concentration, adjusted for differences in shoot Si concentration between studies using a residual maximum likelihood (REML) procedure. Data are based on 125 independent studies in 54 papers in the primary literature.

Mean relative shoot Si concentrations differed significantly between the seven groups of plant species [one-way ANOVA, F6,728 = 18·11, P < 0·001, residual mean square (r.m.s.) = 1·053; Fig. 3]. Shoot Si concentration declined in the order liverworts > horsetails > clubmosses >mosses > angiosperms > gymnosperms > ferns. Notable Si accumulators included Equisetaceae species Equisetum arvense (3·992) and Equisetum hyemale (2·917). However, non-vascular plant species were poorly represented in this study and any inferences about the general Si biology of these groups are not possible without further representation in the analysis.

Fig. 3.

Fig. 3.

Mean (± s.e.m.) relative shoot Si concentration of seven groups of plants (one-way ANOVA, F6,728 = 18·11, P < 0·001, residual mean square = 1·053). Silicon concentrations in leaf or non-woody shoot tissues of 735 plant species were obtained from 125 independent studies reported in 54 papers in the primary literature. Standard errors of differences of means (s.e.d.) between groups can be calculated as √{residual mean square * [(1/n1) + (1/n2)]}. Groups are ranked from lowest to highest mean relative shoot Si concentration: ferns (n = 59), gymnosperms (67), angiosperms (600), mosses (1), clubmosses (5), horse-tails (2), liverworts (1).

Relative shoot Si concentrations were, in general, low in angiosperms, gymnosperms and ferns. However, there was substantial variation in shoot Si concentration within these well-represented groups. The 59 species of ferns sampled in this study were assigned to 14 families representing seven orders (Table 1). The relative shoot Si concentration of ferns ranged from −2·139 in Colysis wrightii (Polypodiaceae) to 1·352 in Athyrium filix-femina (Woodsiaceae). Although there were no significant differences in mean relative shoot Si concentration between fern orders (one-way ANOVA, F6,52 = 1·29, P > 0·05, r.m.s. = 2·448), there were differences in the mean relative shoot Si concentration between the seven fern families sampled from the best-represented fern order (Aspleniales; one-way ANOVA, F6,36 = 4·27, P < 0·01, r.m.s. = 2·729). There were notable differences in relative shoot Si concentration between species in the Woodsiaceae (0·59, n = 11) and in the Dryopteridaceae (–1·68, n = 19).

The 67 species of gymnosperms sampled in this study were assigned to nine families representing five orders (Table 1). The relative shoot Si concentration of gymnosperms ranged from −0·078 in Ephedra sinica (Ephedraceae) to 4·512 in Abies pectinata (Pinaceae). There were no significant differences in mean relative shoot Si concentration between gymnosperm orders (one-way ANOVA, F4,62 = 0·46, P > 0·05, r.m.s. = 0·387). Further, there were no significant differences in the mean relative shoot Si concentration between the five gymnosperm families sampled from the best-represented gymnosperm order (Pinales; one-way ANOVA, F4,56 = 0·01, P > 0·05, r.m.s. = 0·428). In the three well-represented families from this order, mean relative shoot Si concentrations were 0·333 (Taxodiaceae, n = 6), 0·379 (Cupressaceae, n = 10) and 0·387 (Pinaceae, n = 43).

The 600 species of angiosperms sampled in this study were assigned to 114 families of plants representing 44 orders/families unassigned to order (Table 1). These comprised 34 non-monocot and ten monocot (five commelinoid and five non-commelinoid) clades. Mean relative shoot Si concentrations differed significantly between these 44 clades (one-way ANOVA, F43,556 = 5·17, P < 0·001, r.m.s. = 0·76; Fig. 4). Within non-monocot angiosperms, notable low relative shoot Si concentrations occurred amongst Brassicales (0·010, n = 9), Aquifoliales (0·102, n = 3), Cornales (0·196, n = 4) and Fabales (0·263, n = 36) species. High relative shoot Si concentrations were observed in species of Saxifragales (1·351, n = 5), with notable Si accumulation in two species of Crassulaceae (Rhodiola linearifolia, 2·679; Sedum hybridum, 3·329). High relative shoot Si concentrations were also observed in several species of Fagales (0·786, n = 25) including Fagus sylvatica (6·089) and Quercus spp. from the Fagaceae family, in the Rosales (0·764, n = 25) including species from the Celtidaceae, Elaeagnaceae, Ulmaceae and Urticaceae families, in the Asterales (e.g. Helianthus spp.), and in the Caryophyllales (Polygonum spp.). There was intermediate-to-high relative shoot Si concentration in the basal angiosperm groups, although these groups were poorly represented in the analysis (Magnoliales 0·578, n = 4; Laurales 0·592, n = 4; Piperales 0·617, n = 2; Nymphaeaceae 0·685, n = 1; Schisandraceae 1·209, n = 1).

Fig. 4.

Fig. 4.

Mean (±s.e.m.) relative shoot Si concentration in 44 angiosperm clades (representing orders or unassigned families; one-way ANOVA, F43,556 = 5·17, P < 0·001, residual mean square = 0·76). Data were obtained from 125 independent studies in 54 papers in the primary literature. Standard errors of differences of means (s.e.d.) between clades can be calculated as √{residual mean square * [(1/n1) + (1/n2)]}. Groups are ranked from lowest to highest mean relative shoot Si concentration: Acorales (n = 2), Brassicales (9), Liliales (3), Asparagales (24), Aquifoliales (3), Santalales (1), Pandanales (1), Celastraceae (1), Cornales (4), Bromeliaceae (2), Geraniales (1), Vitaceae (1), Fabales (31), Commelinales (1), Myrtales (10), Garryales (1), Malpighiales (13), Solanales (11), Ericales (26), Staphyleaceae (1), Sapindales (13), Gentianales (8), Zingiberales (4), Proteales (1), Ranunculales (10), Cucurbitales (4), Apiales (10), Lamiales (28), Malvales (8), Magnoliales (4), Laurales (4), Caryophyllales (42), Piperales (2), Dipsacales (2), Alismatales (9), Asterales (48), Nymphaeaceae (1), Rosales (25), Fagales (25), Boraginaceae (2), Arecales (9), Schisandraceae (1), Saxifragales (5), Poales (189). Mean shoot Si concentration of Acorales and Brassicales is –0·028 and 0·010, respectively.

Within monocots, shoot Si concentration was substantially lower in non-commelinoid monocot species than in commelinoid monocots (Fig. 5). Indeed, three of the four angiosperm orders containing the lowest shoot Si concentrations were the non-commelinoid monocot orders Acorales (–0·028, n = 2), Liliales (0·055, n = 3) and Asparagales (0·081, n = 24). In contrast, the well-replicated commelinoid monocot orders Arecales (1·204, n = 9) and Poales (1·554, n = 189) had consistently high relative shoot Si concentrations. The few species sampled from other commelinoid monocot clades had low relative shoot Si concentrations, similar to species in non-commelinoid monocot clades, e.g. species of Bromeliaceae (0·199, n = 2) and Commelinales (0·292, n = 1). Thus, from the available data in the published literature, it is concluded that high shoot Si concentration is not a general feature of monocots.

Fig. 5.

Fig. 5.

Percentage frequency distribution of mean relative shoot Si concentration of 600 species of angiosperms classified into commelinoid monocot (continuous line), non-commelinoid monocot (dashed line), or non-monocot (dotted line) groupings.

The main products of Si accumulation are the phytoliths, or silica bodies, which infill the cell walls and lumina of certain cells in plant tissues (Prychid et al., 2004). The shapes and sizes of these phytoliths contain considerable taxonomic information (Powers, 1992; Prychid et al., 2004) and are increasingly being used in both palaeoecological (e.g. Parker et al., 2004) and archaeological (e.g. Ishida et al., 2003) research, since they provide useful information on past vegetation, agriculture and food. Notably, Prychid et al. (2004), working on phytolith systematics in monocots, suggested that silica accumulation was confined to the commelinoid monocots, with the single exception of the Orchidaceae. Since Piperno (1988, tables 2.2–2.4) found that phytolith production was closely related to plant Si content, the observation of Prychid et al. (2004) is consistent with this analysis of published shoot Si data, subject to the caveat that only two Orchidaceae species were represented in the present data set. Thus, this analysis of published shoot Si data indicates which phylogenetic groups are most likely to contain species that are good phytolith producers. Further, this analysis also indicates that shoot Si content, and thus phytolith production, will be influenced more by the higher-level phylogenetic position of a plant rather than by environmental effects such as water availability, temperature, and Si availability in the soil, although environmental effects will influence phytolith production under some circumstances (e.g. Rosen and Weiner, 1994).

In addition to providing useful potential palaeoecological and archaeological information, knowledge of phylogenetic variation in shoot Si accumulation may also inform studies of the biogeochemical cycling of Si, and those of the molecular genetics of Si uptake and transport in plants. For example, Carnelli et al. (2001) estimated the annual contribution of alpine plant communities to the Si biogeochemical cycle in alpine environments and, unsurprisingly, observed that grasslands were the greatest silica producers. Relative Si production in other plant communities could be estimated by multiplying the mean relative shoot Si concentration of each plant phylogenetic grouping represented (e.g. plant family), by the percentage abundance for each group.

To date, Si transporters have only been located in diatoms (Hildebrand et al., 1997). However, rice (a heavy Si accumulator with a mean relative shoot Si concentration of 4·167) has recently become a model plant for the study of Si uptake and transport in vascular plants (Ma et al., 2002, 2004; Mitani and Ma, 2005). Since a rice mutant with markedly decreased Si uptake compared with its wild type has recently been identified (Ma et al., 2002), it seems likely that Si transporter(s) in higher plants will be isolated in due course. The present data will facilitate comparative functional genetic analysis of these transporters (e.g. Mitani and Ma, 2005), by allowing closely related target species with contrasting Si accumulation patterns to be identified for gene/trait association analysis.

There are many phylogenetic groups of plant species that are not represented in this study. To remedy this, further field surveys or comparative experiments are needed and potential sampling strategies are described in Broadley et al. (2003). In the case of Si, field surveys are likely to yield more appropriate information than laboratory experiments for two reasons. First, it has been shown that relative shoot Ca and Mg data are broadly consistent between experimental and field conditions (Broadley et al., 2003, 2004). Since plant-available soil Si is likely to vary less than plant-available soil Ca and Mg between sites, and since there is a relatively small effect of site on relative shoot Si concentration, it is a reasonable (and testable) assumption that field data will correspond in relative terms to comparative experimental data. The second reason is that it is easier and cheaper to sample large numbers of species from their natural habitats—or from botanical collections—than to grow them experimentally from seeds or cuttings. Once further data are collected, it will be possible (1) to determine precisely where Si accumulation traits diverge within commelinoid monocots, (2) to test which of the non-vascular plant groups are characterized by high Si accumulation, and (3) to identify if distinct ordinal/family-level Si accumulation traits occur in groups of species not currently represented in the present data set.

SUPPLEMENTARY INFORMATION

Online at http://aob.oxfordjournals.org provides raw shoot/leaf Si concentrations on a dry weight basis of 735 plant species sampled from 125 studies, contained in 54 papers in the primary literature (full references in the Appendix), in which Si concentrations of leaf or non-woody shoot tissue were reported.

APPENDIX

This Appendix provides data sources for meta-analysis to calculate mean relative shoot Si concentration in plants. Study numbers, in square brackets, are cited in Table 1 and in Supplementary Information.

Barbehenn RV. 1993. Silicon: an indigestible marker for measuring food consumption and utilization by insects. Entomologia Experimentalis et Applicata 67: 247–251. [1]

Bartoli F, Beaucire F. 1976. Accumulation du silicium dans les plantes vivantes en milieux pédogénétiques tempérés aérés. Comptes rendues de l'Academie des Sciences, Paris 282: 1947–1950. [2, 3, 4]

Bertrand G, Ghitescu V. 1934. Sur la composition élémentaire de quelques plantes cultivées. Comptes rendues de l'Academie des Sciences, Paris 199: 1269–1273. [5]

Bezeau LM, Johnston A, Smoliak S. 1966. Silica and protein content of mixed prairie and fescue grassland vegetation and its relationship to the incidence of silica urolithiasis. Canadian Journal of Plant Science 46: 625–631. [6, 7]

Bilbro JD, Undersander DJ, Fryrear DW, Lester CM. 1991. A survey of lignin, cellulose, and acid detergent fiber ash contents of several plants and implications for wind erosion control. Journal of Soil and Water Conservation 46: 314–316. [8, 9, 10, 11]

Blank RR, Allen F, Young JA. 1994. Growth and elemental content of several sagebrush-steppe species in unburned and post-wildfire soil and plant effects on soil attributes. Plant and Soil 164: 35–41. [12, 13]

Butler JD, Hodges TK. 1967. Mineral composition of turfgrasses. HortScience 2: 62–63. [14]

Carnelli AL, Madella M, Theurillat J-P. 2001. Biogenic silica production in selected alpine plant species and plant communities. Annals of Botany 87: 425–434. [15]

Cooper HP, Paden WR, Garman WH, Page NR. 1948. Properties that influence availability of calcium in the soil to plants. Soil Science 65: 75–96. [16]

Cornelissen JHC, Thompson K. 1997. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytologist 135: 109–114. [Si data from experiments in paper provided by J. H. C. Cornelissen, personal communication] [17, 18]

Cowgill UM. 1989. The chemical and mineralogical content of the plants of the Lake Huleh Preserve, Israel. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences 326: 59–118. [19]

de Bakker NVJ, Hemminga MA, Van Soelen J. 1999. The relationship between silicon availability, and growth and silicon concentration of the salt marsh halophyte Spartina anglica Plant and Soil 215: 19–27. [20]

Ellis JR, Watson DMH, Varvel GE, Jawson MD. 1995. Methyl-bromide soil fumigation alters plant-element concentrations. Soil Science Society of America Journal 59: 848–852. [21, 22]

Fu F, Akagi T, Yabuki S, Iwaki M. 2001. The variation of REE (rare earth elements) patterns in soil-grown plants: a new proxy for the source of rare earth elements and silicon in plants. Plant and Soil 235: 53–64. [23, 24]

Gadallah FL, Jefferies RL. 1995. Forage quality in brood rearing areas of the lesser snow goose and the growth of captive goslings. Journal of Applied Ecology 32, 276–287. [25]

Geis JW. 1973. Biogenic silica in selected species of deciduous angiosperms. Soil Science 116: 113–130. [26]

Geis JW. 1978. Biogenic opal in three species of Gramineae. Annals of Botany 42: 1119–1129. [27]

Genßler L. (unpublished data, courtesy of Northrhein-Westfalian State Agency for Ecology, Soil and Forestry, Germany). [28]

Grosse-Brauckmann E. 1953. Uber die kieselsaureaufnahme von pflanzen nach dungung mit kohlensaurem kalk. Zeitschrift fur Pflanzenernahrung und Dungung in der Bodenkunde 62: 19–24. [29–32]

Hodson MJ, Sangster AG. 1998. Mineral deposition in the needles of white spruce [Picea glauca (Moench.) Voss]. Annals of Botany 82: 375–385. [33, 34]

Hodson MJ, Sangster AG. 2002. X-ray microanalytical studies of mineral localization in the needles of white pine (Pinus strobus L.). Annals of Botany 89: 367–374. [33, 34]

Hodson MJ, Williams SE, Sangster AG. 1997. Silica deposition in the needles of the gymnosperms. I. Chemical analysis and light microscopy. In: Pinilla A, Juan-Tresserras J, Machado M. eds. The state-of-the-art of phytoliths in soils and plants, Madrid, Spain: Monograph 4, Centro de Ciencias Medioambientales, 123–133. [35]

Hogenbirk JC, Sarrazin-Delay CL. 1995. Using fuel characteristics to estimate plant ignitability for fire hazard reduction. Water, Air and Soil Pollution 82: 161–170. [36]

Höhne H. 1963. Der mineralstoff- und stickstoffgehalt von waldbodenpflanzen in abhangigkeit vom standort. Archiv fur Forstwesen 12: 791–805. [37–51]

Höhne H, Richter B. 1981. Untersuchungen über den mineralstoff- und stickstoffgehalt von farnkräutern. Flora 171: 1–10. [52, 53]

Johnston A, Bezeau LM, Smoliak S. 1967. Variation in silica content of range grasses. Canadian Journal of Plant Science 47: 65–71. [54–64]

Jones LHP, Handreck KA. 1967. Silica in soils, plants, and animals. Advances in Agronomy 19: 107–149. [65]

Kalisz PJ, Stone EL. 1984. The longleaf pine islands of the Ocala National Forest, Florida: a soil study. Ecology 65, 1743–1754. [66, 67]

Klein RL, Geis JW. 1978. Biogenic silica in the Pinaceae. Soil Science 126: 145–156. [68]

Kolesnikov MP, Gins VK. 2001. Forms of silicon in medicinal plants. Applied Biochemistry and Microbiology 37: 616–620. [69, 70]

Lanning FC. 1966. Silica and calcium deposition in the tissues of certain plants. Advancing Frontiers of Plant Science 13: 55–66. [71, 72]

Lanning FC, Eleuterius LN. 1981. Silica and ash in several marsh plants. Gulf Research Reports 7: 47–52. [73]

Lanning FC, Eleuterius LN. 1983. Silica and ash in tissues of some coastal plants. Annals of Botany 51: 835–850. [74–78]

Lanning FC, Eleuterius LN. 1985. Silica and ash in tissues of some plants growing in the coastal area of Mississippi, USA. Annals of Botany 56: 157–172. [79]

Lanning FC, Eleuterius LN. 1987. Silica and ash in native plants of the central and south eastern regions of the United States. Annals of Botany 60: 361–375. [80, 81]

Lanning FC, Eleuterius LN. 1989. Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. Annals of Botany 63: 395–410. [82]

Ma JF, Takahashi E. 2002.Soil, fertilizer, and silicon research in Japan. Elsevier: Amsterdam. [83, 84]

McManus WR, Robinson VNE, Grout LL. 1977. The physical distribution of mineral material on forage plant cell walls. Australian Journal of Agricultural Research 28: 651–662. [85]

Nakanishi T, Onishi R, Hodson MJ, Akagi T. 2003. Aluminium/silicon interactions in broad-leaved trees and shrubs. Poster presented at the Fifth Keele Meeting on Aluminium in Stoke-on-Trent, UK. (Feb. 2003). [86]

Pahkala K, Pihala M. 2000. Different plant parts as raw material for fuel and pulp production. Industrial Crops and Products 11: 119–128. [87]

Pereira CEDB, Felcman J. 1998. Correlation between five minerals and the healing effect of Brazilian medicinal plants. Biological Trace Element Research 65: 251–259. [88]

Reay PF, Bennett WD. 1987. Determination of amorphous silica and total silica in plant materials. Analytica Chimica Acta 198, 145–152. [89, 90]

Robbins CT, Mole S, Hagerman AE, Hanley TA. 1987. Role of tannins in defending plants against ruminants: reduction in dry matter digestion? Ecology 68: 1606–1615. [91]

Saijonkari-Pahkala K. 2001. Non-wood plants as raw material for pulp and paper. Agricultural and Food Science in Finland 10, Suppl. 1: p. 101, Dissertation, Helsinki University. [92, 93]

Schnug E, von Franck E. 1985. Untersuchungen zur Silizium-Versorgung von Kulturpflanzen in Schleswig-Holstein. Zeitschrift für Pflanzenernährung und Bodenkunde 148: 1–9. [94–96]

Smith GS, Nelson AB, Boggino EJA. 1971. Digestibility of forages in vitro as affected by content of ‘silica’. Journal of Animal Science 33: 466–471. [97]

Street JR. 1974.The influence of silica concentration on the chemical composition and decomposition rates of turfgrass tissue and water absorption rates among three turfgrass species. PhD Thesis, Ohio State University. [98–102]

Taber HG, Shogren D, Lu G. 2002. Extraction of silicon from plant tissue with dilute HCl and HF and measurement by modified inductive coupled argon plasma procedures. Communications in Soil Science and Plant Analysis 33: 1661–1670. [103]

Tirtapradja H. 1971. Quantitative investigations of silica cells in leaves and culms of Festuca pratensis Huds. and F. arundinacea Schreb. Angewandte Botanik 45: 231–247. [104, 105]

Tyler G. 1971. Distribution and turnover of organic matter and minerals in a shore meadow ecosystem. Studies in the ecology of Baltic sea-shore meadows IV. Oikos 22: 265–291. [106]

Van der Vorm PDJ. 1980. Uptake of Si by five plant species as influenced by variations in Si-supply. Plant and Soil 56: 153–156. [107, 108]

Wallace A. 1989. Relationships among nitrogen, silicon, and heavy metal uptake by plants. Soil Science 147: 457–460. [109–122]

Wallace A, Romney EM, Mueller RT. 1976. Nitrogen-silicon interaction in plants grown in desert soil with nitrogen deficiency. Agronomy Journal 68: 529–530. [123, 124]

Wilding LP, Drees LR. 1971. Biogenic opal in Ohio soils. Soil Science Society of America, Proceedings 35: 1004–1010. [125]

Supplementary Material

Content Select
Supplementary Data

Acknowledgments

We thank D. Bowdery, J. H. C. Cornelissen, L. Genßler, D. Hart, C. Korndörfer, G. Korndörfer, K. Pahkala and H. G. Taber for providing unpublished data, clarifying data in their publications, and giving us some useful leads. Unfortunately, we were unable to use all of the data provided, as we could not locate overlaps with species in the main data set, but this has been kept on record for the future. This paper is dedicated to Dr Dafydd Wynn Parry who first introduced one of us (M.J.H.) to silicon research, who wrote many fine papers on this topic in Annals of Botany, and who still takes a keen interest in all things siliceous.

LITERATURE CITED

  1. APG. 1998. An ordinal classification for the families of flowering plants. Annals of the Missouri Botanical Garden 85: 531–553. [Google Scholar]
  2. Britez RM, Watanabe T, Jansen S, Reissmann CB, Osaki M. 2002. The relationship between aluminium and silicon accumulation in leaves of Faramea marginata (Rubiaceae). New Phytologist 156: 437–444. [DOI] [PubMed] [Google Scholar]
  3. Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ. 2003. Variation in the shoot calcium content of angiosperms. Journal of Experimental Botany 54: 1431–1446. [DOI] [PubMed] [Google Scholar]
  4. Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ. 2004. Phylogenetic variation in the shoot mineral concentration of angiosperms. Journal of Experimental Botany 55: 321–336. [DOI] [PubMed] [Google Scholar]
  5. Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ. 2001. Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytologist 152: 9–27. [DOI] [PubMed] [Google Scholar]
  6. Carnelli AL, Madella M, Theurillat J-P. 2001. Biogenic silica production in selected alpine plant species and plant communities. Annals of Botany 87: 425–434. [Google Scholar]
  7. Epstein E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology 50: 641–664. [DOI] [PubMed] [Google Scholar]
  8. Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor Physiologia Plantarum 123: 459–466. [Google Scholar]
  9. Hildebrand M, Volcani BE, Gassmann W, Schroeder JI. 1997. A gene family of silicon transporters. Nature 385: 688–689. [DOI] [PubMed] [Google Scholar]
  10. Hodson MJ, Evans DE. 1995. Aluminium/silicon interactions in higher plants. Journal of Experimental Botany 46: 161–171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hodson MJ, Sangster AG. 1999. Aluminium/silicon interactions in conifers. Journal of Inorganic Biochemistry 76: 89–98. [Google Scholar]
  12. Ishida S, Parker AG, Kennet D, Hodson MJ. 2003. Phytolith analysis from the archaeological site of Kush, Ras al Khaimah, United Arab Emirates. Quaternary Research 59: 310–321. [Google Scholar]
  13. Jansen S, Watanabe T, Dessein S, Smets E, Robbrecht E. 2003. A comparative study of metal levels in leaves of some Al-accumulating Rubiaceae. Annals of Botany 91: 657–663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones LHP, Handreck K. 1967. Silica in soils, plants and animals. Advances in Agronomy 19: 107–149. [Google Scholar]
  15. Lux A, Luxova M, Abe J, Morita S, Inanaga S. 2003a. Silicification of bamboo (Phyllostachys heterocycla Mitf.) root and leaf. Plant and Soil 255: 85–91. [Google Scholar]
  16. Lux A, Luxova M, Abe J, Tanimoto E, Hattori T, Inanaga S. 2003b. The dynamics of silicon deposition in the sorghum root endodermis. New Phytologist 158: 437–441. [DOI] [PubMed] [Google Scholar]
  17. Lux A, Luxova M, Hattori T, Inanaga S, Sugimoto Y. 2002. Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiologia Plantarum 115: 87–92. [DOI] [PubMed] [Google Scholar]
  18. Ma JF. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50: 11–18. [Google Scholar]
  19. Ma JF, Takahashi E. 2002.Soil, fertilizer, and silicon research in Japan. Amsterdam: Elsevier. [Google Scholar]
  20. Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T, Yano M. 2004. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology 136: 3284–3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ma JF, Tamai K, Ichii M, Wu GF. 2002. A rice mutant defective in Si uptake. Plant Physiology 130: 2111–2117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mitani N, Ma JF. 2005. Uptake system of silicon in different plant species. Journal of Experimental Botany 56: 1255–1261. [DOI] [PubMed] [Google Scholar]
  23. Parker AG, Eckersley L, Smith MM, Goudie AS, Stokes S, Ward S, White K, Hodson MJ. 2004. Holocene vegetation dynamics in the north eastern Rub' al-Khali desert, Arabian Peninsula: a phytolith, pollen and carbon isotope study. Journal of Quaternary Science 19: 665–676. [Google Scholar]
  24. Pereira HS, Korndörfer GH, Vidal AD, de Camargo MS. 2004. Silicon sources for rice crop. Scientia Agricola 61: 522–528. [Google Scholar]
  25. Piperno DR. 1988.Phytolith analysis. An archaeological and geological perspective. London: Academic Press. [DOI] [PubMed] [Google Scholar]
  26. Powers AH. 1992. Great expectations: a short historical review of European phytolith sytematics. In: Rapp Jr G, Mulholland SC, eds. Phytolith systematics—emerging issues Advances in Archaeological and Museum Science 1: 15–35. [Google Scholar]
  27. Prychid CJ, Rudall PJ, Gregory M. 2004. Systematics and biology of silica bodies in monocotyledons. Botanical Review 69: 377–440. [Google Scholar]
  28. Richmond KE, Sussman M. 2003. Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology 6: 268–272. [DOI] [PubMed] [Google Scholar]
  29. Rosen AM, Weiner S. 1994. Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. Journal of Archaeological Science 21: 125–132. [Google Scholar]
  30. de Saussure T. 1804.Recherches chimiques sur la végétation. Paris: Nyon. [Google Scholar]
  31. Savant NK, Korndörfer GH, Datnoff LE, Snyder GH. 1999. Silicon nutrition and sugarcane production: a review. Journal of Plant Nutrition 22: 1853–1903. [Google Scholar]
  32. Wang YX, Stass A, Horst WJ. 2004. Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiology 136: 3762–3770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. White PJ. 2005. Calcium. In: Broadley MR, White PJ, eds. Plant nutritional genomics. Oxford: Blackwell, 66–86. [Google Scholar]
  34. White PJ, Broadley MR. 2003. Calcium in plants. Annals of Botany 92: 487–511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, et al. 2004. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana Journal of Experimental Botany 55: 1927–1937. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Content Select
supp_mci255_mci268f2.gif (1,022B, gif)
Supplementary Data

Articles from Annals of Botany are provided here courtesy of Oxford University Press

RESOURCES