Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 14;92(6):2328–2332. doi: 10.1073/pnas.92.6.2328

Cloning, expression, and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase.

T Nakashima 1, T Inoue 1, A Oka 1, T Nishino 1, T Osumi 1, S Hata 1
PMCID: PMC42476  PMID: 7892265

Abstract

We have isolated and characterized two overlapping cDNA clones for Arabidopsis thaliana squalene synthase. Their nucleotide sequences contained an open reading frame for a 410-amino acid polypeptide (calculated molecular mass, 47 kDa). The deduced amino acid sequence of the Arabidopsis polypeptide was significantly homologous (42-44% identical) to the sequences of known squalene synthases of several species, from yeast to man, but it was much less homologous to that of tomato phytoene synthase. To express the Arabidopsis enzyme in Escherichia coli, the entire coding region was subcloned into an expression vector. A cell-free extract of E. coli transformed with the recombinant plasmid, in the presence of NADPH and Mg2+, efficiently converted [14C]farnesyl diphosphate into squalene. On the other hand, in the absence of NADPH and the presence of Mn2+, the cell-free extract formed dehydrosqualene as a secondary product. Another E. coli extract expressing mouse squalene synthase showed the same activity as the Arabidopsis enzyme. Therefore, both the structure and reaction mechanism of squalene synthases are markedly conserved in taxonomically remote eukaryotes.

Full text

PDF
2328

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartley G. E., Viitanen P. V., Bacot K. O., Scolnik P. A. A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway. J Biol Chem. 1992 Mar 15;267(8):5036–5039. [PubMed] [Google Scholar]
  2. Belingheri L., Beyer P., Kleinig H., Gleizes M. Solubilization and partial purification of squalene synthase from daffodil microsomal membranes. FEBS Lett. 1991 Nov 4;292(1-2):34–36. doi: 10.1016/0014-5793(91)80827-p. [DOI] [PubMed] [Google Scholar]
  3. Brown M. S., Goldstein J. L. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 1980 Jul;21(5):505–517. [PubMed] [Google Scholar]
  4. Caelles C., Ferrer A., Balcells L., Hegardt F. G., Boronat A. Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Mol Biol. 1989 Dec;13(6):627–638. doi: 10.1007/BF00016018. [DOI] [PubMed] [Google Scholar]
  5. Corey E. J., Matsuda S. P., Bartel B. Molecular cloning, characterization, and overexpression of ERG7, the Saccharomyces cerevisiae gene encoding lanosterol synthase. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2211–2215. doi: 10.1073/pnas.91.6.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dogbo O., Laferriére A., D'Harlingue A., Camara B. Carotenoid biosynthesis: Isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7054–7058. doi: 10.1073/pnas.85.19.7054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fegueur M., Richard L., Charles A. D., Karst F. Isolation and primary structure of the ERG9 gene of Saccharomyces cerevisiae encoding squalene synthetase. Curr Genet. 1991 Nov;20(5):365–372. doi: 10.1007/BF00317063. [DOI] [PubMed] [Google Scholar]
  8. Hanley K., Chappell J. Solubilization, partial purification, and immunodetection of squalene synthetase from tobacco cell suspension cultures. Plant Physiol. 1992 Jan;98(1):215–220. doi: 10.1104/pp.98.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hashimoto J., Hirabayashi T., Hayano Y., Hata S., Ohashi Y., Suzuka I., Utsugi T., Toh-e A., Kikuchi Y. Isolation and characterization of cDNA clones encoding cdc2 homologues from Oryza sativa: a functional homologue and cognate variants. Mol Gen Genet. 1992 May;233(1-2):10–16. doi: 10.1007/BF00587555. [DOI] [PubMed] [Google Scholar]
  10. Hata S., Inoue T., Kosuga K., Nakashima T., Tsukamoto T., Osumi T. Identification of two splice isoforms of mRNA for mouse hepatocyte nuclear factor 4 (HNF-4). Biochim Biophys Acta. 1995 Jan 2;1260(1):55–61. doi: 10.1016/0167-4781(94)00177-5. [DOI] [PubMed] [Google Scholar]
  11. Hata S., Kouchi H., Suzuka I., Ishii T. Isolation and characterization of cDNA clones for plant cyclins. EMBO J. 1991 Sep;10(9):2681–2688. doi: 10.1002/j.1460-2075.1991.tb07811.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirayama T., Imajuku Y., Anai T., Matsui M., Oka A. Identification of two cell-cycle-controlling cdc2 gene homologs in Arabidopsis thaliana. Gene. 1991 Sep 15;105(2):159–165. doi: 10.1016/0378-1119(91)90146-3. [DOI] [PubMed] [Google Scholar]
  13. Inoue T., Osumi T., Hata S. Molecular cloning and functional expression of a cDNA for mouse squalene synthase. Biochim Biophys Acta. 1995 Jan 2;1260(1):49–54. doi: 10.1016/0167-4781(94)00178-6. [DOI] [PubMed] [Google Scholar]
  14. Jennings S. M., Tsay Y. H., Fisch T. M., Robinson G. W. Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6038–6042. doi: 10.1073/pnas.88.14.6038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jiang G., McKenzie T. L., Conrad D. G., Shechter I. Transcriptional regulation by lovastatin and 25-hydroxycholesterol in HepG2 cells and molecular cloning and expression of the cDNA for the human hepatic squalene synthase. J Biol Chem. 1993 Jun 15;268(17):12818–12824. [PubMed] [Google Scholar]
  16. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  17. Learned R. M., Fink G. R. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2779–2783. doi: 10.1073/pnas.86.8.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McKenzie T. L., Jiang G., Straubhaar J. R., Conrad D. G., Shechter I. Molecular cloning, expression, and characterization of the cDNA for the rat hepatic squalene synthase. J Biol Chem. 1992 Oct 25;267(30):21368–21374. [PubMed] [Google Scholar]
  19. Nishino T., Takatsuji H., Hata S., Katsuki H. Synthesis of dehydrosqualene in microsomal fraction of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1978 Dec 14;85(3):867–873. doi: 10.1016/0006-291x(78)90624-1. [DOI] [PubMed] [Google Scholar]
  20. Robinson G. W., Tsay Y. H., Kienzle B. K., Smith-Monroy C. A., Bishop R. W. Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation. Mol Cell Biol. 1993 May;13(5):2706–2717. doi: 10.1128/mcb.13.5.2706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sasiak K., Rilling H. C. Purification to homogeneity and some properties of squalene synthetase. Arch Biochem Biophys. 1988 Feb 1;260(2):622–627. doi: 10.1016/0003-9861(88)90490-0. [DOI] [PubMed] [Google Scholar]
  23. Shechter I., Klinger E., Rucker M. L., Engstrom R. G., Spirito J. A., Islam M. A., Boettcher B. R., Weinstein D. B. Solubilization, purification, and characterization of a truncated form of rat hepatic squalene synthetase. J Biol Chem. 1992 Apr 25;267(12):8628–8635. [PubMed] [Google Scholar]
  24. Summers C., Karst F., Charles A. D. Cloning, expression and characterisation of the cDNA encoding human hepatic squalene synthase, and its relationship to phytoene synthase. Gene. 1993 Dec 22;136(1-2CHE):185–192. doi: 10.1016/0378-1119(93)90462-c. [DOI] [PubMed] [Google Scholar]
  25. Suzuka I., Hata S., Matsuoka M., Kosugi S., Hashimoto J. Highly conserved structure of proliferating cell nuclear antigen (DNA polymerase delta auxiliary protein) gene in plants. Eur J Biochem. 1991 Jan 30;195(2):571–575. doi: 10.1111/j.1432-1033.1991.tb15739.x. [DOI] [PubMed] [Google Scholar]
  26. Takatsuji H., Nishino T., Izui K., Katsuki H. Formation of dehydrosqualene catalyzed by squalene synthetase in Saccharomyces cerevisiae. J Biochem. 1982 Mar;91(3):911–921. doi: 10.1093/oxfordjournals.jbchem.a133780. [DOI] [PubMed] [Google Scholar]
  27. Zhang D., Jennings S. M., Robinson G. W., Poulter C. D. Yeast squalene synthase: expression, purification, and characterization of soluble recombinant enzyme. Arch Biochem Biophys. 1993 Jul;304(1):133–143. doi: 10.1006/abbi.1993.1331. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES