Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Mar 14;92(6):2388–2392. doi: 10.1073/pnas.92.6.2388

Selective labeling of intracellular parasite proteins by using ricin.

A M Gurnett 1, P M Dulski 1, S J Darkin-Rattray 1, M J Carrington 1, D M Schmatz 1
PMCID: PMC42489  PMID: 7892277

Abstract

Studies focused on the synthesis by intracellular parasites of developmentally regulated proteins have been limited due to the lack of a simple method for selectively labeling proteins produced by the parasite. A method has now been developed in which ricin is employed to selectively inhibit host-cell protein synthesis. Ricin is a heterodimer composed of two subunits, a lectin and a glycosidase, and it binds to terminal galactose residues on the cell surface via the lectin. Following endocytosis of the intact molecule, a disulfide bond linking the two subunits is cleaved, and only the glycosidase subunit enters the cytoplasm, where it inhibits cytoplasmic protein synthesis by catalyzing the cleavage of the 28S rRNA. Due to the loss of the receptor-binding lectin subunit, ricin cannot permeate host-cell mitochondria or intracellular parasites, and, therefore, protein synthesis within these compartments continues uninterrupted. This system has been used to selectively label parasite proteins from Eimeria tenella and Toxoplasma gondii by using the avian cell line DU-24. In these cells, mitochondrial protein synthesis was inhibited by using chloramphenicol. The use of the avian rho0 cell line DUS-3 provided an additional advantage, because these cells lack mitochondrial DNA. Therefore, those proteins radiolabeled with [35S]methionine/cysteine in ricin-treated, parasite-infected rho0 cells are exclusively those of the intracellular parasite. This technique should be applicable for studying protein synthesis by other intracellular parasites.

Full text

PDF
2388

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abshire K. Z., Neidhardt F. C. Analysis of proteins synthesized by Salmonella typhimurium during growth within a host macrophage. J Bacteriol. 1993 Jun;175(12):3734–3743. doi: 10.1128/jb.175.12.3734-3743.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attardi G., Ching E. Biogenesis of mitochondrial proteins in HeLa cells. Methods Enzymol. 1979;56:66–79. doi: 10.1016/0076-6879(79)56010-8. [DOI] [PubMed] [Google Scholar]
  3. Brundage R. A., Smith G. A., Camilli A., Theriot J. A., Portnoy D. A. Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11890–11894. doi: 10.1073/pnas.90.24.11890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Desjardins P., Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 1990 Apr 20;212(4):599–634. doi: 10.1016/0022-2836(90)90225-B. [DOI] [PubMed] [Google Scholar]
  5. Dulski P., Turner M. The purification of sporocysts and sporozoites from Eimeria tenella oocysts using Percoll density gradients. Avian Dis. 1988 Apr-Jun;32(2):235–239. [PubMed] [Google Scholar]
  6. Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem. 1987 Jun 15;262(17):8128–8130. [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Lin J. Y., Liu K., Chen C. C., Tung T. C. Effect of crystalline ricin on the biosynthesis of protein, RNA, and DNA in experimental tumor cells. Cancer Res. 1971 Jul;31(7):921–924. [PubMed] [Google Scholar]
  9. Merli A., Canessa A., Melioli G. Enzyme immunoassay for evaluation of Toxoplasma gondii growth in tissue culture. J Clin Microbiol. 1985 Jan;21(1):88–91. doi: 10.1128/jcm.21.1.88-91.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Morais R., Desjardins P., Turmel C., Zinkewich-Péotti K. Development and characterization of continuous avian cell lines depleted of mitochondrial DNA. In Vitro Cell Dev Biol. 1988 Jul;24(7):649–658. doi: 10.1007/BF02623602. [DOI] [PubMed] [Google Scholar]
  11. Nantulya V. M. Molecular diagnosis of parasites. Experientia. 1991 Feb 15;47(2):142–145. doi: 10.1007/BF01945414. [DOI] [PubMed] [Google Scholar]
  12. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  13. Olson J. A. In situ enzyme-linked immunosorbent assay to quantitate in vitro development of Eimeria tenella. Antimicrob Agents Chemother. 1990 Jul;34(7):1435–1439. doi: 10.1128/aac.34.7.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pelham H. R., Roberts L. M., Lord J. M. Toxin entry: how reversible is the secretory pathway? Trends Cell Biol. 1992 Jul;2(7):183–185. doi: 10.1016/0962-8924(92)90230-k. [DOI] [PubMed] [Google Scholar]
  15. Pfefferkorn E. R., Pfefferkorn L. C. Toxoplasma gondii: growth in the absence of host cell protein synthesis. Exp Parasitol. 1981 Aug;52(1):129–136. doi: 10.1016/0014-4894(81)90068-0. [DOI] [PubMed] [Google Scholar]
  16. Pfefferkorn E. R., Pfefferkorn L. C. Toxoplasma gondii: isolation and preliminary characterization of temperature-sensitive mutants. Exp Parasitol. 1976 Jun;39(3):365–376. doi: 10.1016/0014-4894(76)90040-0. [DOI] [PubMed] [Google Scholar]
  17. Schmatz D. M., Crane M. S., Murray P. K. Purification of Eimeria sporozoites by DE-52 anion exchange chromatography. J Protozool. 1984 Feb;31(1):181–183. doi: 10.1111/j.1550-7408.1984.tb04314.x. [DOI] [PubMed] [Google Scholar]
  18. Sibley L. D., Krahenbuhl J. L., Adams G. M., Weidner E. Toxoplasma modifies macrophage phagosomes by secretion of a vesicular network rich in surface proteins. J Cell Biol. 1986 Sep;103(3):867–874. doi: 10.1083/jcb.103.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sugimoto C., Conrad P. A., Ito S., Brown W. C., Grab D. J. Isolation of Theileria parva schizonts from infected lymphoblastoid cells. Acta Trop. 1988 Sep;45(3):203–216. [PubMed] [Google Scholar]
  20. Wilde C. G., Boguslawski S., Houston L. L. Resistance of Tetrahymena to ricin, a toxic enzyme from Ricinus communis. Biochem Biophys Res Commun. 1979 Dec 14;91(3):1082–1088. doi: 10.1016/0006-291x(79)91991-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES