Abstract
To determine whether chloride-depletion metabolic alkalosis (CDA) can be corrected by provision of chloride without volume expansion or intranephronal redistribution of fluid reabsorption, CDA was produced in Sprague-Dawley rats by peritoneal dialysis against 0.15 M NaHCO3; controls (CON) were dialyzed against Ringer's bicarbonate. Animals were infused with isotonic solutions containing the same Cl and total CO2 (tCO2) concentrations as in postdialysis plasma at rates shown to be associated with slight but stable volume contraction. During the subsequent 6 h, serum Cl and tCO2 concentrations remained stable and normal in CON and corrected towards normal in CDA; urinary chloride excretion was less and bicarbonate excretion greater than those in CON during this period. Micropuncture and microinjection studies were performed in the 3rd h after dialysis. Plasma volumes determined by 125I-albumin were not different. Inulin clearance and fractional chloride excretion were lower (P less than 0.05) in CDA. Superficial nephron glomerular filtration rate determined from distal puncture sites was lower (P less than 0.02) in CDA (27.9 +/- 2.3 nl/min) compared with that in CON (37.9 +/- 2.6). Fractional fluid and chloride reabsorption in the proximal convoluted tubule and within the loop segment did not differ. Fractional chloride delivery to the early distal convolution did not differ but that out of this segment was less (P less than 0.01) in group CDA. Urinary recovery of 36Cl injected into the collecting duct segment was lower (P less than 0.01) in CDA (CON 74 +/- 3; CDA 34 +/- 4%). These data show that CDA can be corrected by the provision of chloride without volume expansion or alterations in the intranephronal distribution of fluid reabsorption. Enhanced chloride reabsorption in the collecting duct segment, and possibly in the distal convoluted tubule, contributes importantly to this correction.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ATKINS E. L., SCHWARTZ W. B. Factors governing correction of the alkalosis associated with potassium deficiency; the critical role of chloride in the recovery process. J Clin Invest. 1962 Feb;41:218–229. doi: 10.1172/JCI104473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abboud H. E., Luke R. G., Galla J. H., Kotchen T. A. Stimulation of renin by acute selective chloride depletion in the rat. Circ Res. 1979 Jun;44(6):815–821. doi: 10.1161/01.res.44.6.815. [DOI] [PubMed] [Google Scholar]
- BELCHER E. H., HARRISS E. B. Studies of plasma volume, red cell volume and total blood volume in young growing rats. J Physiol. 1957 Nov 14;139(1):64–78. doi: 10.1113/jphysiol.1957.sp005875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell P. D., Navar L. G. Relationship between tubulo-glomerular feedback responses and perfusate hypotonicity. Kidney Int. 1982 Sep;22(3):234–239. doi: 10.1038/ki.1982.160. [DOI] [PubMed] [Google Scholar]
- Blantz R. C., Konnen K. S. Relation of distal tubular delivery and reabsorptive rate to nephron filtration. Am J Physiol. 1977 Oct;233(4):F315–F324. doi: 10.1152/ajprenal.1977.233.4.F315. [DOI] [PubMed] [Google Scholar]
- Cohen J. J. Correction of metabolic alkalosis by the kidney after isomertric expansion of extracellular fluid. J Clin Invest. 1968 May;47(5):1181–1192. doi: 10.1172/JCI105807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen J. J. Selective Cl retention in repair of metabolic alkalosis without increasing filtered load. Am J Physiol. 1970 Jan;218(1):165–170. doi: 10.1152/ajplegacy.1970.218.1.165. [DOI] [PubMed] [Google Scholar]
- De Mello Aires M., Malnic G. Micropuncture study of acidification during hypochloremic alkalosis in the rat. Pflugers Arch. 1972;331(1):13–24. doi: 10.1007/BF00587187. [DOI] [PubMed] [Google Scholar]
- De Mello Aires M., Malnic G. Renal handling of sodium and potassium during hypochloremic alkalosis in the rat. Pflugers Arch. 1972;331(3):215–225. doi: 10.1007/BF00589128. [DOI] [PubMed] [Google Scholar]
- Diezi J., Michoud P., Aceves J., Giebisch G. Micropuncture study of electrolyte transport across papillary collecting duct of the rat. Am J Physiol. 1973 Mar;224(3):623–634. doi: 10.1152/ajplegacy.1973.224.3.623. [DOI] [PubMed] [Google Scholar]
- DuBose T. D., Jr, Seldin D. W., Kokko J. P. Segmental chloride reabsorption in the rat nephron as a function of load. Am J Physiol. 1978 Feb;234(2):F97–105. doi: 10.1152/ajprenal.1978.234.2.F97. [DOI] [PubMed] [Google Scholar]
- FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
- Feldman G. M., Charney A. N. Effect of acute metabolic alkalosis and acidosis on intestinal electrolyte transport in vivo. Am J Physiol. 1980 Nov;239(5):G427–G436. doi: 10.1152/ajpgi.1980.239.5.G427. [DOI] [PubMed] [Google Scholar]
- GORDON E. E. Effect of acute metabolic acidosis and alkalosis on acetate and citrate metabolism in the rat. J Clin Invest. 1963 Feb;42:137–142. doi: 10.1172/JCI104700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GULYASSY P. F., VAN YPERSELE DE STRIHOU C., SCHWARTZ W. B. On the mechanism of nitrate-induced alkalosis. The possible role of selective chloride depletion in acid-base regulation. J Clin Invest. 1962 Oct;41:1850–1862. doi: 10.1172/JCI104642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galla J. H., Beaumont J. E., Luke R. G. Effect of volume expansion with NaCl or NaHCO3 on nephron fluid and Cl transport. Am J Physiol. 1977 Aug;233(2):F118–F125. doi: 10.1152/ajprenal.1977.233.2.F118. [DOI] [PubMed] [Google Scholar]
- Galla J. H., Bonduris D. N., Luke R. G. Correction of acute chloride-depletion alkalosis in the rat without volume expansion. Am J Physiol. 1983 Feb;244(2):F217–F221. doi: 10.1152/ajprenal.1983.244.2.F217. [DOI] [PubMed] [Google Scholar]
- Galla J. H., Kirchner K. A., Kotchen T. A., Luke R. G. Effect of hypochloremia on loop segment chloride and solute reabsorption in the rat during volume expansion. Kidney Int. 1981 Nov;20(5):569–574. doi: 10.1038/ki.1981.178. [DOI] [PubMed] [Google Scholar]
- Garella S., Dana C. L., Chazan J. A. Severity of metabolic acidosis as a determinant of bicarbonate requirements. N Engl J Med. 1973 Jul 19;289(3):121–126. doi: 10.1056/NEJM197307192890303. [DOI] [PubMed] [Google Scholar]
- Harris C. A., Baer P. G., Chirito E., Dirks J. H. Composition of mammalian glomerular filtrate. Am J Physiol. 1974 Oct;227(4):972–976. doi: 10.1152/ajplegacy.1974.227.4.972. [DOI] [PubMed] [Google Scholar]
- Hulter H. N., Ilnicki L. P., Harbottle J. A., Sebastian A. Correction of metabolic acidosis by the kidney during isometric expansion of extracellular fluid volume. J Lab Clin Med. 1978 Oct;92(4):602–612. [PubMed] [Google Scholar]
- Iino Y., Burg M. B. Effect of acid-base status in vivo on bicarbonate transport by rabbit renal tubules in vitro. Jpn J Physiol. 1981;31(1):99–107. doi: 10.2170/jjphysiol.31.99. [DOI] [PubMed] [Google Scholar]
- Jacobson H. R. Effects of CO2 and acetazolamide on bicarbonate and fluid transport in rabbit proximal tubules. Am J Physiol. 1981 Jan;240(1):F54–F62. doi: 10.1152/ajprenal.1981.240.1.F54. [DOI] [PubMed] [Google Scholar]
- KASSIRER J. P., BERKMAN P. M., LAWRENZ D. R., SCHWARTZ W. B. THE CRITICAL ROLE OF CHLORIDE IN THE CORRECTION OF HYPOKALEMIC ALKALOSIS IN MAN. Am J Med. 1965 Feb;38:172–189. doi: 10.1016/0002-9343(65)90172-5. [DOI] [PubMed] [Google Scholar]
- Kassirer J. P., Schwartz W. B. Correction of metabolic alkalosis in man without repair of potassium deficiency. A re-evaluation of the role of potassium. Am J Med. 1966 Jan;40(1):19–26. doi: 10.1016/0002-9343(66)90183-5. [DOI] [PubMed] [Google Scholar]
- Kirchner K. A., Galla J. H., Luke R. G. Factors influencing chloride reabsorption in the collecting duct segment of the rat. Am J Physiol. 1980 Dec;239(6):F552–F559. doi: 10.1152/ajprenal.1980.239.6.F552. [DOI] [PubMed] [Google Scholar]
- Luke R. G., Warren Y., Kashgarian M., Levitin H. Effects of chloride restriction and depletion on acid-base balance and chloride conservation in the rat. Clin Sci. 1970 Mar;38(3):385–396. doi: 10.1042/cs0380385. [DOI] [PubMed] [Google Scholar]
- Maddox D. A., Price D. C., Rector F. C., Jr Effects of surgery on plasma volume and salt and water excretion in rats. Am J Physiol. 1977 Dec;233(6):F600–F606. doi: 10.1152/ajprenal.1977.233.6.F600. [DOI] [PubMed] [Google Scholar]
- NEEDLE M. A., KALOYANIDES G. J., SCHWARTZ W. B. THE EFFECTS OF SELECTIVE DEPLETION OF HYDROCHLORIC ACID ON ACID-BASE AND ELECTROLYTE EQUILIBRIUM. J Clin Invest. 1964 Sep;43:1836–1846. doi: 10.1172/JCI105057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RECTOR F. C., Jr, CLAPP J. R. Evidence for active chloride reabsorption in the distal renal tubule of the rat. J Clin Invest. 1962 Jan;41:101–107. doi: 10.1172/JCI104451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schafer J. A., Troutman S. L., Andreoli T. E. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J Gen Physiol. 1974 Nov;64(5):582–607. doi: 10.1085/jgp.64.5.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schnermann J., Briggs J. Concentration-dependent sodium chloride transport as the signal in feedback control of glomerular filtration rate. Kidney Int Suppl. 1982 Aug;12:S82–S89. [PubMed] [Google Scholar]
- Schwartz W. B., Cohen J. J. The nature of the renal response to chronic disorders of acid-base equilibrium. Am J Med. 1978 Mar;64(3):417–428. doi: 10.1016/0002-9343(78)90227-9. [DOI] [PubMed] [Google Scholar]
- Schwartz W. B., Van Ypersele de Strihou, Kassirer J. P. Role of anions in metabolic alkalosis and potassium deficiency. N Engl J Med. 1968 Sep 19;279(12):630–639. doi: 10.1056/NEJM196809192791204. [DOI] [PubMed] [Google Scholar]
- Seldin D. W., Rosin J. M., rector F. C., Jr Evidence against bicarbonate reabsorption in the ascending limb, particularly as disclosed by free-water clearance studies. Yale J Biol Med. 1975 Sep;48(4):337–347. [PMC free article] [PubMed] [Google Scholar]
- Sheth A. U., Knight T. F., Pace E., Senekjian H. O., Weinman E. J. Segmental chloride reabsorption during volume expansion and recovery. Am J Physiol. 1981 May;240(5):F395–F399. doi: 10.1152/ajprenal.1981.240.5.F395. [DOI] [PubMed] [Google Scholar]
- Simpson D. P., Hager S. R. pH and bicarbonate effects on mitochondrial anion accumulation. Proposed mechanism for changes in renal metabolite levels in acute acid-base disturbances. J Clin Invest. 1979 Apr;63(4):704–712. doi: 10.1172/JCI109353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone D. K., Seldin D. W., Kokko J. P., Jacobson H. R. Anion dependence of rabbit medullary collecting duct acidification. J Clin Invest. 1983 May;71(5):1505–1508. doi: 10.1172/JCI110905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WINDHAGER E. E., GIEBISCH G. ELECTROPHYSIOLOGY OF THE NEPHRON. Physiol Rev. 1965 Apr;45:214–244. doi: 10.1152/physrev.1965.45.2.214. [DOI] [PubMed] [Google Scholar]
- Warren Y., Luke R. G., Kashgarian M., Levitin H. Micropuncture studies of chloride and bicarbonate absorption in the proximal renal tubule of the rat in respiratory acidosis and in chloride depletion. Clin Sci. 1970 Mar;38(3):375–383. doi: 10.1042/cs0380375. [DOI] [PubMed] [Google Scholar]
- Wright F. S. Increasing magnitude of electrical potential along the renal distal tubule. Am J Physiol. 1971 Mar;220(3):624–638. doi: 10.1152/ajplegacy.1971.220.3.624. [DOI] [PubMed] [Google Scholar]