Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Jan;73(1):107–115. doi: 10.1172/JCI111180

Adenosine triphosphate-dependent calcium pump in the plasma membrane of guinea pig and human neutrophils.

H Lagast, P D Lew, F A Waldvogel
PMCID: PMC424977  PMID: 6317713

Abstract

Changes in cytosolic free Ca may function as a second messenger in neutrophils. Since the plasma membrane seems to be a major regulator of intracellular Ca in many cells, we characterized an energy-dependent Ca transport system in plasma membrane-enriched fractions ("podosomes") from phorbol myristate acetate-stimulated guinea pig and human neutrophils. The active Ca transport system in guinea pig podosomes exhibited a high affinity for Ca (Michaelis constant [Km]Ca 280 +/- 120 nM) and a maximum velocity of 0.83 nmol Ca/mg protein per min. Uptake showed an absolute requirement for Mg ATP (Km ATP 67 microM), whereas other trinucleotides were inactive. Ca uptake was optimal at pH 7, was azide insensitive and temperature dependent. Vanadium, an inhibitor of the Ca/Mg ATPase of heart sarcolemma, inhibited Ca pump activity by 50% at 1 microM. Ca transport was not affected in a NaCl-containing medium, an observation arguing against the presence of a Na/Ca exchange system. Calmodulin at 0.5-10 micrograms/ml stimulated the Ca pumping activity of EGTA-washed podosomes. Calmodulin depletion decreased the affinity of the Ca pump for Ca (Km Ca 2.07 microM) and its readdition restored it (Km Ca 0.55 microM). ATP-dependent Ca transport by podosomes and phagocytic vesicles was inactivated by exposure to trypsin or to the nonpenetrating sulfhydryl reagent rho-chloromercuribenzene sulfonate. Human podosomes had a Ca uptake system with properties similar to those of the guinea pig. These findings demonstrate the presence of a Ca pump in the neutrophil plasma membrane, which is active at physiological concentrations of free cytosolic Ca. By changing Ca concentrations at the cell periphery, this pump could control various motile functions of the neutrophil, such as locomotion or degranulation.

Full text

PDF
107

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amrein P. C., Stossel T. P. Prevention of degradation of human polymorphonuclear leukocyte proteins by diisopropylfluorophosphate. Blood. 1980 Sep;56(3):442–447. [PubMed] [Google Scholar]
  2. Babior B. M. Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med. 1978 Mar 30;298(13):721–725. doi: 10.1056/NEJM197803302981305. [DOI] [PubMed] [Google Scholar]
  3. Caroni P., Carafoli E. An ATP-dependent Ca2+-pumping system in dog heart sarcolemma. Nature. 1980 Feb 21;283(5749):765–767. doi: 10.1038/283765a0. [DOI] [PubMed] [Google Scholar]
  4. Caroni P., Carafoli E. The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem. 1981 Apr 10;256(7):3263–3270. [PubMed] [Google Scholar]
  5. Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
  6. Cockcroft S., Bennett J. P., Gomperts B. D. The dependence on Ca2+ of phosphatidylinositol breakdown and enzyme secretion in rabbit neutrophils stimulated by formylmethionyl-leucylphenylalanine or ionomycin. Biochem J. 1981 Dec 15;200(3):501–508. doi: 10.1042/bj2000501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen H. J., Chovaniec M. E., Davies W. A. Activation of the guinea pig granulocyte NAD(P)H-dependent superoxide generating enzyme: localization in a plasma membrane enriched particle and kinetics of activation. Blood. 1980 Mar;55(3):355–363. [PubMed] [Google Scholar]
  8. Cohen H. J., Chovaniec M. E. Superoxide production by digitonin-stimulated guinea pig granulocytes. The effects of N-ethyl maleimide, divalent cations; and glycolytic and mitochondrial inhibitors on the activation of the superoxide generating system. J Clin Invest. 1978 Apr;61(4):1088–1096. doi: 10.1172/JCI109008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DePierre J. W., Karnovsky M. L. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. I. Evidence for an ecto-adenosine monophosphatase, adenosine triphosphatase, and -p-nitrophenyl phosphates. J Biol Chem. 1974 Nov 25;249(22):7111–7120. [PubMed] [Google Scholar]
  10. Farrance M. L., Vincenzi F. F. Enhancement of (Ca2+ + Mg2+)-ATPase activity of human erythrocyte membranes by hemolysis in isosmotic imidazole buffer. II. Dependence on calcium and a cytoplasmic activator. Biochim Biophys Acta. 1977 Nov 15;471(1):59–66. doi: 10.1016/0005-2736(77)90393-5. [DOI] [PubMed] [Google Scholar]
  11. Gennaro R., Mottola C., Schneider C., Romeo D. Ca2+-dependent ATPase activity of alveolar macrophage plasma membrane. Biochim Biophys Acta. 1979 Mar 16;567(1):238–246. doi: 10.1016/0005-2744(79)90190-6. [DOI] [PubMed] [Google Scholar]
  12. Gietzen K., Mansard A., Bader H. Inhibition of human erythrocyte Ca++-transport ATPase by phenothiazines and butyrophenones. Biochem Biophys Res Commun. 1980 May 30;94(2):674–681. doi: 10.1016/0006-291x(80)91285-1. [DOI] [PubMed] [Google Scholar]
  13. Jackowski S., Petro K., Sha'afi R. I. A Ca2+-stimulated ATPase activity in rabbit neutrophil membranes. Biochim Biophys Acta. 1979 Dec 12;558(3):348–352. doi: 10.1016/0005-2736(79)90272-4. [DOI] [PubMed] [Google Scholar]
  14. Kraus-Friedmann N., Biber J., Murer H., Carafoli E. Calcium uptake in isolated hepatic plasma-membrane vesicles. Eur J Biochem. 1982 Dec;129(1):7–12. doi: 10.1111/j.1432-1033.1982.tb07014.x. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Larsen F. L., Vincenzi F. F. Calcium transport across the plasma membrane: stimulation by calmodulin. Science. 1979 Apr 20;204(4390):306–309. doi: 10.1126/science.155309. [DOI] [PubMed] [Google Scholar]
  17. Lew P. D., Southwick F. S., Stossel T. P., Whitin J. C., Simons E., Cohen H. J. A variant of chronic granulomatous disease: deficient oxidative metabolism due to a low-affinity NADPH oxidase. N Engl J Med. 1981 Nov 26;305(22):1329–1333. doi: 10.1056/NEJM198111263052207. [DOI] [PubMed] [Google Scholar]
  18. Lew P. D., Stossel T. P. Calcium transport by macrophage plasma membranes. J Biol Chem. 1980 Jun 25;255(12):5841–5846. [PubMed] [Google Scholar]
  19. Lew P. D., Stossel T. P. Effect of calcium on superoxide production by phagocytic vesicles from rabbit alveolar macrophages. J Clin Invest. 1981 Jan;67(1):1–9. doi: 10.1172/JCI110000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morcos N. C. Localization of (Ca2+ + Mg2+)-ATPase, Ca2+ pump and other ATPase activities in cardiac sarcolemma. Biochim Biophys Acta. 1982 Jun 28;688(3):747–756. doi: 10.1016/0005-2736(82)90288-7. [DOI] [PubMed] [Google Scholar]
  21. Mottola C., Romeo D. Calcium movement and membrane potential changes in the early phase of neutrophil activation by phorbol myristate acetate: a study with ion-selective electrodes. J Cell Biol. 1982 Apr;93(1):129–134. doi: 10.1083/jcb.93.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Newburger P. E., Chovaniec M. E., Cohen H. J. Activity and activation of the granulocyte superoxide-generating system. Blood. 1980 Jan;55(1):85–92. [PubMed] [Google Scholar]
  23. Petroski R. J., Naccache P. H., Becker E. L., Sha'afi R. I. Effect of chemotactic factors on calcium levels of rabbit neutrophils. Am J Physiol. 1979 Jul;237(1):C43–C49. doi: 10.1152/ajpcell.1979.237.1.C43. [DOI] [PubMed] [Google Scholar]
  24. Prentki M., Crettaz M., Jeanrenaud B. Role of microtubules in insulin and glucagon stimulation of amino acid transport in isolated rat hepatocytes. J Biol Chem. 1981 May 10;256(9):4336–4340. [PubMed] [Google Scholar]
  25. Romeo D., Zabucchi G., Miani N., Rossi F. Ion movement across leukocyte plasma membrane and excitation of their metabolism. Nature. 1975 Feb 13;253(5492):542–544. doi: 10.1038/253542a0. [DOI] [PubMed] [Google Scholar]
  26. Scharff O., Foder B. Reversible shift between two states of Ca2+-ATPase in human erythrocytes mediated by Ca2+ and a membrane-bound activator. Biochim Biophys Acta. 1978 May 4;509(1):67–77. doi: 10.1016/0005-2736(78)90008-1. [DOI] [PubMed] [Google Scholar]
  27. Schneider C., Mottola C., Romeo D. Calcium ion-dependent adenosine triphosphatase activity and plasma-membrane phosphorylation in the human neutrophil. Biochem J. 1979 Sep 15;182(3):655–660. doi: 10.1042/bj1820655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scully S. P., Segel G. B., Lichtman M. A. Plasma membrane vesicles prepared from unadhered monocytes: characterization of calcium transport and the calcium ATPase. Cell Calcium. 1982 Dec;3(6):515–530. doi: 10.1016/0143-4160(82)90042-2. [DOI] [PubMed] [Google Scholar]
  29. Simons T. J. Vanadate--a new tool for biologists. Nature. 1979 Oct 4;281(5730):337–338. doi: 10.1038/281337a0. [DOI] [PubMed] [Google Scholar]
  30. Smith R. J., Bowman B. J., Iden S. S. Effects of trifluoperazine on human neutrophil function. Immunology. 1981 Dec;44(4):677–684. [PMC free article] [PubMed] [Google Scholar]
  31. Smith R. J., Iden S. S. Modulation of human neutrophil superoxide anion generation by the calcium antagonist 8-(N,N-diethylamino)-octyl-(3,4,5-trimethoxy) benzoate hydrochloride. J Reticuloendothel Soc. 1981 Mar;29(3):215–225. [PubMed] [Google Scholar]
  32. Smolen J. E., Korchak H. M., Weissmann G. The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils. Biochim Biophys Acta. 1981 Nov 5;677(3-4):512–520. doi: 10.1016/0304-4165(81)90267-1. [DOI] [PubMed] [Google Scholar]
  33. Snyderman R., Goetzl E. J. Molecular and cellular mechanisms of leukocyte chemotaxis. Science. 1981 Aug 21;213(4510):830–837. doi: 10.1126/science.6266014. [DOI] [PubMed] [Google Scholar]
  34. Southwick F. S., Stossel T. P. Contractile proteins in leukocyte function. Semin Hematol. 1983 Oct;20(4):305–321. [PubMed] [Google Scholar]
  35. Stossel T. P., Field R. J., Gitlin J. D., Alper C. A., Rosen F. S. The opsonic fragment of the third component of human complement (C3). J Exp Med. 1975 Jun 1;141(6):1329–1347. doi: 10.1084/jem.141.6.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stossel T. P. Phagocytosis (third of three parts). N Engl J Med. 1974 Apr 11;290(15):833–839. doi: 10.1056/NEJM197404112901506. [DOI] [PubMed] [Google Scholar]
  37. Stossel T. P., Pollard T. D., Mason R. J., Vaughan M. Isolation and properties of phagocytic vesicles from polymorphonuclear leukocytes. J Clin Invest. 1971 Aug;50(8):1745–1747. doi: 10.1172/JCI106664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stossel T. P. Quantitative studies of phagocytosis. Kinetic effects of cations and heat-labile opsonin. J Cell Biol. 1973 Aug;58(2):346–356. doi: 10.1083/jcb.58.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Trotter J. A., Quintana R. L. Inhibition of macrophage spreading by antagonists of cellular calcium. FEBS Lett. 1981 Jun 29;129(1):29–32. doi: 10.1016/0014-5793(81)80747-8. [DOI] [PubMed] [Google Scholar]
  40. Varecka L., Carafoli E. Vanadate-induced movements of Ca2+ and K+ in human red blood cells. J Biol Chem. 1982 Jul 10;257(13):7414–7421. [PubMed] [Google Scholar]
  41. Vincenzi F. F., Adunyah E. S., Niggli V., Carafoli E. Purified red blood cell Ca2+-pump ATPase: evidence for direct inhibition by presumed anti-calmodulin drugs in the absence of calmodulin. Cell Calcium. 1982 Dec;3(6):545–559. doi: 10.1016/0143-4160(82)90044-6. [DOI] [PubMed] [Google Scholar]
  42. Vincenzi F. F. Calmodulin pharmacology. Cell Calcium. 1981 Aug;2(4):387–409. doi: 10.1016/0143-4160(81)90027-0. [DOI] [PubMed] [Google Scholar]
  43. Volpi M., Naccache P. H., Sha'afi R. I. Calcium transport in inside-out membrane vesicles prepared from rabbit neutrophils. J Biol Chem. 1983 Apr 10;258(7):4153–4158. [PubMed] [Google Scholar]
  44. Waisman D. M., Gimble J. M., Goodman D. B., Rasmussen H. Studies of the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. I. Regulation of the Ca2+ pump by calmodulin. J Biol Chem. 1981 Jan 10;256(1):409–414. [PubMed] [Google Scholar]
  45. Yin H. L., Albrecht J. H., Fattoum A. Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol. 1981 Dec;91(3 Pt 1):901–906. doi: 10.1083/jcb.91.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yin H. L., Stossel T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979 Oct 18;281(5732):583–586. doi: 10.1038/281583a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES