Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Jan;73(1):134–147. doi: 10.1172/JCI111184

Calcium is a competitive inhibitor of gentamicin-renal membrane binding interactions and dietary calcium supplementation protects against gentamicin nephrotoxicity.

H D Humes, M Sastrasinh, J M Weinberg
PMCID: PMC424983  PMID: 6690474

Abstract

The divalent cations, Ca++ and Mg++, are known to competitively inhibit a large number of aminoglycoside-membrane interactions, so that Ca++ prevents both the neurotoxic and ototoxic effects of these antibiotics acutely in vitro. Since gentamicin-induced plasma and subcellular membrane damage appear to be critical pathogenetic events in gentamicin nephrotoxicity, Ca++ may play a similar protective role in gentamicin-induced acute renal failure. To test this possibility in vivo, rats (group 2) were given a 4% calcium (in the form of CaCO3) supplemented diet to increase delivery of Ca++ to the kidney and administered single daily subcutaneous injections of gentamicin, 100 mg/kg, for 10 d. Compared with a simultaneously studied group (group 1) of rats receiving identical gentamicin dosages and normal diets, Ca++ supplementation ameliorated gentamicin-induced acute renal failure. After 10 doses of gentamicin, blood-urea nitrogen values in group 1 averaged 213 +/- 15 (SE) and 25 +/- 3 (P less than 0.001) in group 2. The progressive decline in renal excretory function, as measured by BUN, in group 1 animals was accompanied by simultaneous declines in renal cortical mitochondrial function and elevations in renal cortex and mitochondrial Ca++ content, quantitative indices of the degree of renal tubular cell injury. Oral Ca++ loading markedly attenuated these gentamicin-induced derangements. After eight and 10 doses of gentamicin, mitochondria isolated from the renal cortex of group 2 rats had significantly higher rates of respiration supported by pyruvate-malate, succinate and N,N,N',N'-tetramethyl-p-phenyldiamine-ascorbate, higher rates of dinitrophenol-uncoupled respiration and greater acceptor control ratios than those measured in mitochondria isolated from the renal cortex of group 1 animals. Similarly, after 8 and 10 doses, renal cortex and renal cortical mitochondrial Ca++ content of group 2 was significantly lower than values observed in group 1. Thus, dietary calcium supplementation significantly protected against gentamicin-induced renal tubular cell injury and, consequently, gentamicin-induced acute renal failure. The mechanism for this protective effect of Ca++ may relate to the manner in which this polycationic antibiotic interacts with anionic sites, primarily the acidic phospholipids of renal membranes. In this regard, Ca++ was found to be a competitive inhibitor both of 125I-gentamicin binding to renal brush border membranes, the initial site of interaction between gentamicin and renal proximal tubule cells, with a composite inhibition constant (Ki) of 12 mM and of 125I-gentamicin binding to phosphatidic acid, an important membrane acidic phosph

Full text

PDF
134

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams H. R., Durrett L. R. Gentamicin blockade of slow Ca++ channels in atrial myocardium of guinea pigs. J Clin Invest. 1978 Aug;62(2):241–247. doi: 10.1172/JCI109122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anniko M., Bagger-Sjöbäck D., Wersäll J., Schacht J. Gentamicin binding to the isolated crista ampullaris of the guinea pig. Res Commun Chem Pathol Pharmacol. 1982 Sep;37(3):333–342. [PubMed] [Google Scholar]
  3. Bennett W. M., Elliott W. C., Houghton D. C., Gilbert D. N., DeFehr J., McCarron D. A. Reduction of experimental gentamicin nephrotoxicity in rats by dietary calcium loading. Antimicrob Agents Chemother. 1982 Sep;22(3):508–512. doi: 10.1128/aac.22.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett W. M., Hartnett M. N., Gilbert D., Houghton D., Porter G. A. Effect of sodium intake on gentamicin nephrotoxicity in the rat. Proc Soc Exp Biol Med. 1976 Apr;151(4):736–738. doi: 10.3181/00379727-151-39296. [DOI] [PubMed] [Google Scholar]
  5. Buckley J. T., Hawthorne J. N. Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding. J Biol Chem. 1972 Nov 25;247(22):7218–7223. [PubMed] [Google Scholar]
  6. Chiu P. J., Miller G. H., Long J. F., Waitz J. A. Renal uptake and nephrotoxicity of gentamicin during urinary alkalinization in rats. Clin Exp Pharmacol Physiol. 1979 May-Jun;6(3):317–326. doi: 10.1111/j.1440-1681.1979.tb01253.x. [DOI] [PubMed] [Google Scholar]
  7. Elliott W. C., Parker R. A., Houghton D. C., Gilbert D. N., Porter G. A., DeFehr J., Bennett W. M. Effect of sodium bicarbonate and ammonium chloride ingestion in experimental gentamicin nephrotoxicity in rats. Res Commun Chem Pathol Pharmacol. 1980 Jun;28(3):483–495. [PubMed] [Google Scholar]
  8. Farber J. L. The role of calcium in cell death. Life Sci. 1981 Sep 28;29(13):1289–1295. doi: 10.1016/0024-3205(81)90670-6. [DOI] [PubMed] [Google Scholar]
  9. Farese R. V., Bidot-López P., Sabir A., Smith J. S., Schinbeckler B., Larson R. Parathyroid hormone acutely increases polyphosphoinositides of the rabbit kidney cortex by a cycloheximide-sensitive process. J Clin Invest. 1980 Jun;65(6):1523–1526. doi: 10.1172/JCI109818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hancock R. E. Aminoglycoside uptake and mode of action--with special reference to streptomycin and gentamicin. I. Antagonists and mutants. J Antimicrob Chemother. 1981 Oct;8(4):249–276. doi: 10.1093/jac/8.4.249. [DOI] [PubMed] [Google Scholar]
  11. Humes H. D., Weinberg J. M. Alterations of renal tubular cell metabolism in acute renal failure. Miner Electrolyte Metab. 1983;9(4-6):290–305. [PubMed] [Google Scholar]
  12. Humes H. D., Weinberg J. M., Knauss T. C. Clinical and pathophysiologic aspects of aminoglycoside nephrotoxicity. Am J Kidney Dis. 1982 Jul;2(1):5–29. doi: 10.1016/s0272-6386(82)80039-5. [DOI] [PubMed] [Google Scholar]
  13. Humes H. D., Weinberg J. M. The effect of gentamicin on antidiuretic hormone-stimulated osmotic water flow in the toad urinary bladder. J Lab Clin Med. 1983 Mar;101(3):472–478. [PubMed] [Google Scholar]
  14. Just M., Habermann E. The renal handling of polybasic drugs. 2. In vitro studies with brush border and lysosomal preparations. Naunyn Schmiedebergs Arch Pharmacol. 1977 Oct;300(1):67–76. doi: 10.1007/BF00505081. [DOI] [PubMed] [Google Scholar]
  15. Knauss T. C., Weinberg J. M., Humes H. D. Alterations in renal cortical phospholipid content induced by gentamicin: time course, specificity, and subcellular localization. Am J Physiol. 1983 May;244(5):F535–F546. doi: 10.1152/ajprenal.1983.244.5.F535. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lipsky J. J., Cheng L., Sacktor B., Lietman P. S. Gentamicin uptake by renal tubule brush border membrane vesicles. J Pharmacol Exp Ther. 1980 Nov;215(2):390–393. [PubMed] [Google Scholar]
  18. Lodhi S., Weiner N. D., Schacht J. Interactions of neomycin and calcium in synaptosomal membranes and polyphosphoinostide monolayers. Biochim Biophys Acta. 1976 Apr 5;426(4):781–785. doi: 10.1016/0005-2736(76)90147-4. [DOI] [PubMed] [Google Scholar]
  19. Lüllmann H., Vollmer B. An interaction of aminoglycoside antibiotics with Ca binding to lipid monolayers and to biomembranes. Biochem Pharmacol. 1982 Dec 1;31(23):3769–3773. doi: 10.1016/0006-2952(82)90291-x. [DOI] [PubMed] [Google Scholar]
  20. Meltzer V., Weinreb S., Bellorin-Font E., Hruska K. A. Parathyroid hormone stimulation of renal phosphoinositide metabolism is a cyclic nucleotide-independent effect. Biochim Biophys Acta. 1982 Aug 18;712(2):258–267. doi: 10.1016/0005-2760(82)90342-3. [DOI] [PubMed] [Google Scholar]
  21. Nicholls D. G., Crompton M. Mitochondrial calcium transport. FEBS Lett. 1980 Mar 10;111(2):261–268. doi: 10.1016/0014-5793(80)80806-4. [DOI] [PubMed] [Google Scholar]
  22. Pittinger C., Adamson R. Antibiotic blockade of neuromuscular function. Annu Rev Pharmacol. 1972;12:169–184. doi: 10.1146/annurev.pa.12.040172.001125. [DOI] [PubMed] [Google Scholar]
  23. Sastrasinh M., Knauss T. C., Weinberg J. M., Humes H. D. Identification of the aminoglycoside binding site in rat renal brush border membranes. J Pharmacol Exp Ther. 1982 Aug;222(2):350–358. [PubMed] [Google Scholar]
  24. Sastrasinh M., Weinberg J. M., Humes H. D. The effect of gentamicin on calcium uptake by renal mitochondria. Life Sci. 1982 Jun 28;30(26):2309–2315. doi: 10.1016/0024-3205(82)90258-2. [DOI] [PubMed] [Google Scholar]
  25. Schacht J. Isolation of an aminoglycoside receptor from guinea pig inner ear tissues and kidney. Arch Otorhinolaryngol. 1979;224(1-2):129–134. doi: 10.1007/BF00455236. [DOI] [PubMed] [Google Scholar]
  26. Schor N., Ichikawa I., Rennke H. G., Troy J. L., Brenner B. M. Pathophysiology of altered glomerular function in aminoglycoside-treated rats. Kidney Int. 1981 Feb;19(2):288–296. doi: 10.1038/ki.1981.19. [DOI] [PubMed] [Google Scholar]
  27. Simmons C. F., Jr, Bogusky R. T., Humes H. D. Inhibitory effects of gentamicin on renal mitochondrial oxidative phosphorylation. J Pharmacol Exp Ther. 1980 Sep;214(3):709–715. [PubMed] [Google Scholar]
  28. Simmons C. F., Jr, Rennke H. G., Humes H. D. Acute renal failure induced by diethylaminoethyl dextran: importance of cationic charge. Kidney Int. 1981 Mar;19(3):424–430. doi: 10.1038/ki.1981.35. [DOI] [PubMed] [Google Scholar]
  29. Somermeyer M. G., Knauss T. C., Weinberg J. M., Humes H. D. Characterization of Ca2+ transport in rat renal brush-border membranes and its modulation by phosphatidic acid. Biochem J. 1983 Jul 15;214(1):37–46. doi: 10.1042/bj2140037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takada A., Schacht J. Calcium antagonism and reversibility of gentamicin-induced loss of cochlear microphonics in the guinea pig. Hear Res. 1982 Oct;8(2):179–186. doi: 10.1016/0378-5955(82)90073-9. [DOI] [PubMed] [Google Scholar]
  31. Vital Brazil O., Prado-Franceschi J. The nature of neuromuscular block produced by neomycin and gentamicin. Arch Int Pharmacodyn Ther. 1969 May;179(1):78–85. [PubMed] [Google Scholar]
  32. Weinberg J. M., Harding P. G., Humes H. D. Alterations in renal cortex cation homeostasis during mercuric chloride and gentamicin nephrotoxicity. Exp Mol Pathol. 1983 Aug;39(1):43–60. doi: 10.1016/0014-4800(83)90040-0. [DOI] [PubMed] [Google Scholar]
  33. Weinberg J. M., Harding P. G., Humes H. D. Mechanisms of gentamicin-induced dysfunction of renal cortical mitochondria. II. Effects on mitochondrial monovalent cation transport. Arch Biochem Biophys. 1980 Nov;205(1):232–239. doi: 10.1016/0003-9861(80)90103-4. [DOI] [PubMed] [Google Scholar]
  34. Weinberg J. M., Harding P. G., Humes H. D. Mitochondrial bioenergetics during the initiation of mercuric chloride-induced renal injury. I. Direct effects of in vitro mercuric chloride on renal mitochondrial function. J Biol Chem. 1982 Jan 10;257(1):60–67. [PubMed] [Google Scholar]
  35. Weinberg J. M., Harding P. G., Humes H. D. Mitochondrial bioenergetics during the initiation of mercuric chloride-induced renal injury. II. Functional alterations of renal cortical mitochondria isolated after mercuric chloride treatment. J Biol Chem. 1982 Jan 10;257(1):68–74. [PubMed] [Google Scholar]
  36. Weinberg J. M., Humes H. D. Mechanisms of gentamicin-induced dysfunction of renal cortical mitochondria. I. Effects on mitochondrial respiration. Arch Biochem Biophys. 1980 Nov;205(1):222–231. doi: 10.1016/0003-9861(80)90102-2. [DOI] [PubMed] [Google Scholar]
  37. Zager R. A. Hyperphosphatemia: a factor that provokes severe experimental acute renal failure. J Lab Clin Med. 1982 Aug;100(2):230–239. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES