Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Mar;73(3):740–749. doi: 10.1172/JCI111267

Functional characterization of the alpha adrenergic receptor modulating the hydroosmotic effect of vasopressin on the rabbit cortical collecting tubule.

R K Krothapalli, W N Suki
PMCID: PMC425076  PMID: 6323526

Abstract

To characterize the type of alpha adrenergic receptor, the effects of specific alpha adrenergic agonists and antagonists on antidiuretic hormone [( Arg8]-vasopressin [AVP])-induced water absorption were evaluated in cortical collecting tubules isolated from the rabbit kidney and perfused in vitro. In the presence of AVP (100 microU/ml), net fluid volume absorption (Jv, nanoliters per minute per millimeter) was 1.39 +/- 0.09 and osmotic water permeability coefficient (Pf, X 10(-4) centimeters per second) was 150.2 +/- 15.0. The addition of 10(-6) M phenylephrine (PE), an alpha adrenergic agonist, resulted in a significant decrease in Jv and Pf to 0.72 +/- 0.11 (P less than 0.005) and 69.9 +/- 10.9 (P less than 0.005). The addition of 10(-4) M prazosin (PZ), an alpha adrenergic antagonist, did not cause any significant change in Jv and Pf, which were 0.71 +/- 0.09 (P = NS vs. AVP + PE) and 67.8 +/- 9.5 (P = NS vs. AVP + PE), respectively. In a separate group of tubules, in the presence of AVP (100 microU/ml) and PE (10(-6) M), Jv and Pf were 0.78 +/- 0.17 and 76.1 +/- 18.0, respectively. The addition of 10(-6) M yohimbine (Y), an alpha 2 adrenergic antagonist, resulted in a significant increase in Jv to 1.46 +/- 0.14 (P less than 0.01) and Pf to 157.5 +/- 22.3 (P less than 0.005). Y (10(-4) M) or PZ (10(-4) M) alone did not significantly affect Jv and Pf in the presence of AVP )100 microU/ml). The effect of the natural endogenous catecholamine norepinephrine (NE) on Jv and Pf in the presence of AVP and propranolol (PR) was next examined. Jv and Pf were 1.53 +/- 0.07 and 176.3 +/- 5.2, respectively, in the presence of AVP (100 microU/ml) and PR (10(-4) M). The addition of NE (10(-8) M) resulted in a significant decrease in Jv to 1.19 +/- 0.11 (P less than 0.05) and Pf to 127.0 +/- 11.3 (P less than 0.02). Increasing the concentration of NE to 10(-6) M resulted in a further decrease in Jv and Pf to 0.70 +/- 0.10 (P less than 0.01 vs. NE 10(-8) M) and 68.5 +/- 10.6 (P less than 0.01 vs. NE 10(-8) M), respectively. The inhibitory effect of NE on AVP-induced water absorption was blocked by Y, but not by PZ. The effect of the alpha 2 adrenergic agonist clonidine (CD) on Jv and Pf was also examined. In the presence of AVP (10 microU/ml) Jv and Pf were 1.65 +/- 0.04 and 175.1 +/- 13.1, respectively. The addition of CD (10(-6) M) resulted in a significant decrease in Jv to 1.08 +/- 0.12 (P < 0.01) and Pf to 108.1 +/- 15.4 (P < 0.01). Increasing the concentration of CD to 10(-4) M resulted in a further significant decrease in Jv and Pf to 0.57 +/- 0.13 (P < 0.02 vs. CD 10(-6) M) and 54.7 +/- 13.8 (P < 0.01 vs. CD 10(-6) M), respectively. Similar results were obtained in the presence of AVP (100 microU/ml). The inhibitory effect of CD on AVP-induced water absorption was blocked by Y. CD did not significantly affect Jv and Pf in the presence of 8-bromo adenosine 3',5'-cyclic monophosphate. These studies indicate that alpha adrenergic agonists directly inhibit AVP-mediated water absorption at the level of renal tubule, an effect that can be blocked by specific alpha2 adrenergic antagonists, but not by specific alpha1 adrenergic antagonists. Alpha2 adrenergic stimulation directly inhibits AVP-mediate water absorption at the level of the tubule, an effect that can be blocked by a specific alpha2 adrenergic antagonist. This effect appears to be exerted at the level of activation of adenylate cyclase, since it is absent in the present of cyclic AMP.

Full text

PDF
740

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Zahid G., Schafer J. A., Troutman S. L., Andreoli T. E. Effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes, in mammalian cortical collecting tubules: evidence for parallel ADH-sensitive pathways for water and solute diffusion in luminal plasma membranes. J Membr Biol. 1977 Feb 24;31(1-2):103–129. doi: 10.1007/BF01869401. [DOI] [PubMed] [Google Scholar]
  2. Barajas L., Müller J. The innervation of the juxtaglomerular apparatus and surrounding tubules: a quantitative analysis by serial section electron microscopy. J Ultrastruct Res. 1973 Apr;43(1):107–132. doi: 10.1016/s0022-5320(73)90073-7. [DOI] [PubMed] [Google Scholar]
  3. Barajas L., Wang P., Powers K., Nishio S. Identification of renal neuroeffector junctions by electron microscopy of reembedded light microscopic autoradiograms of semithin sections. J Ultrastruct Res. 1981 Dec;77(3):379–385. doi: 10.1016/s0022-5320(81)80034-2. [DOI] [PubMed] [Google Scholar]
  4. Berl T., Harbottle J. A., Schrier R. W. Effect of alpha- and beta-adrenergic stimulation on renal water excretion in man. Kidney Int. 1974 Oct;6(4):247–253. doi: 10.1038/ki.1974.106. [DOI] [PubMed] [Google Scholar]
  5. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  6. Dahlström A., Häggendal J. Some quantitative studies on the noradrenaline content in the cell bodies and terminals of a sympathetic adrenergic neuron system. Acta Physiol Scand. 1966 Jul-Aug;67(3):271–277. doi: 10.1111/j.1748-1716.1966.tb03312.x. [DOI] [PubMed] [Google Scholar]
  7. DiBona G. F. Neurogenic regulation of renal tubular sodium reabsorption. Am J Physiol. 1977 Aug;233(2):F73–F81. doi: 10.1152/ajprenal.1977.233.2.F73. [DOI] [PubMed] [Google Scholar]
  8. Doxey J. C., Smith C. F., Walker J. M. Selectivity of blocking agents for pre-and postsynaptic alpha-adrenoceptors. Br J Pharmacol. 1977 May;60(1):91–96. doi: 10.1111/j.1476-5381.1977.tb16752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fisher D. A. Norepinephrine inhibition of vasopressin antidiuresis. J Clin Invest. 1968 Mar;47(3):540–547. doi: 10.1172/JCI105750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frindt G., Windhager E. E., Taylor A. Hydroosmotic response of collecting tubules to ADH or cAMP at reduced peritubular sodium. Am J Physiol. 1982 Nov;243(5):F503–F513. doi: 10.1152/ajprenal.1982.243.5.F503. [DOI] [PubMed] [Google Scholar]
  11. Gullner H. G. Lack of suppression of vasopressin plasma levels by catapres. Pharmacol Res Commun. 1979 Jan;11(1):39–44. doi: 10.1016/s0031-6989(79)80096-x. [DOI] [PubMed] [Google Scholar]
  12. Hardy M. A. Intracellular calcium as a modulator of transepithelial permeability to water in frog urinary bladder. J Cell Biol. 1978 Mar;76(3):787–791. doi: 10.1083/jcb.76.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoefke W., Kobinger W. Pharmakologische Wirkungen des 2-(2,6-Dichlorphenylamino)-2-imidazolin-hydrochlorids, einer neuen, antihypertensiven Substanz. Arzneimittelforschung. 1966 Aug;16(8):1038–1050. [PubMed] [Google Scholar]
  14. Hoffman B. B., Lefkowitz R. J. Alpha-adrenergic receptor subtypes. N Engl J Med. 1980 Jun 19;302(25):1390–1396. doi: 10.1056/NEJM198006193022504. [DOI] [PubMed] [Google Scholar]
  15. Humes H. D., Simmons C. F., Jr, Brenner B. M. Effect of verapamil on the hydroosmotic response to antidiuretic hormone in toad urinary bladder. Am J Physiol. 1980 Sep;239(3):F250–F257. doi: 10.1152/ajprenal.1980.239.3.F250. [DOI] [PubMed] [Google Scholar]
  16. Humphreys M. H., Reid I. A., Chou L. Y. Suppression of antidiuretic hormone secretion by clonidine in the anesthetized dog. Kidney Int. 1975 Jun;7(6):405–412. doi: 10.1038/ki.1975.58. [DOI] [PubMed] [Google Scholar]
  17. Insel P. A., Snavely M. D. Catecholamines and the kidney: receptors and renal function. Annu Rev Physiol. 1981;43:625–636. doi: 10.1146/annurev.ph.43.030181.003205. [DOI] [PubMed] [Google Scholar]
  18. Jarrott B., Louis W. J., Summers R. J. The characteristics of [3H]-clonidine binding to an alpha-adrenoceptor in membranes from guinea-pig kidney. Br J Pharmacol. 1979 Apr;65(4):663–670. doi: 10.1111/j.1476-5381.1979.tb07879.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Krothapalli R. K., Duffy W. B., Senekjian H. O., Suki W. N. Modulation of the hydro-osmotic effect of vasopressin on the rabbit cortical collecting tubule by adrenergic agents. J Clin Invest. 1983 Jul;72(1):287–294. doi: 10.1172/JCI110968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moss N. G. Renal function and renal afferent and efferent nerve activity. Am J Physiol. 1982 Nov;243(5):F425–F433. doi: 10.1152/ajprenal.1982.243.5.F425. [DOI] [PubMed] [Google Scholar]
  21. Müller J., Barajas L. Electron microscopic and histochemical evidence for a tubular innervation in the renal cortex of the monkey. J Ultrastruct Res. 1972 Dec;41(5):533–549. doi: 10.1016/s0022-5320(72)90054-8. [DOI] [PubMed] [Google Scholar]
  22. Olsen U. B. Clonidine-induced increase of renal prostaglandin activity and water diuresis in conscious dogs. Eur J Pharmacol. 1976 Mar;36(1):95–101. doi: 10.1016/0014-2999(76)90261-2. [DOI] [PubMed] [Google Scholar]
  23. Schmitz J. M., Graham R. M., Sagalowsky A., Pettinger W. A. Renal alpha-1 and alpha-2 adrenergic receptors: biochemical and pharmacological correlations. J Pharmacol Exp Ther. 1981 Nov;219(2):400–406. [PubMed] [Google Scholar]
  24. Schrier R. W., Berl T. Mechanism of effect of alpha adrenergic stimulation with norepinephrine on renal water excretion. J Clin Invest. 1973 Feb;52(2):502–511. doi: 10.1172/JCI107207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schrier R. W. Effects of adrenergic nervous system and catecholamines on systemic and renal hemodynamics, sodium and water excretion and renin secretion. Kidney Int. 1974 Nov;6(5):291–306. doi: 10.1038/ki.1974.115. [DOI] [PubMed] [Google Scholar]
  26. Schrier R. W., Lieberman R., Ufferman R. C. Mechanism of antidiuretic effect of beta adrenergic stimulation. J Clin Invest. 1972 Jan;51(1):97–111. doi: 10.1172/JCI106803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Solez K., Ideura T., Silvia C. B., Hamilton B., Saito H. Clonidine after renal ischemia to lessen acute renal failure and microvascular damage. Kidney Int. 1980 Sep;18(3):309–322. doi: 10.1038/ki.1980.141. [DOI] [PubMed] [Google Scholar]
  28. U'Prichard D. C., Snyder S. H. Distinct alpha-noradrenergic receptors differentiated by binding and physiological relationships. Life Sci. 1979 Jan 1;24(1):79–88. doi: 10.1016/0024-3205(79)90283-2. [DOI] [PubMed] [Google Scholar]
  29. Woodcock E. A., Johnston C. I., Olsson C. A. Alpha-adrenergic inhibition of renal cortical adenylate cyclase. J Cyclic Nucleotide Res. 1980;6(4):261–269. [PubMed] [Google Scholar]
  30. Woodcock E. A., Johnston C. I. Selective inhibition by epinephrine of parathyroid hormone-stimulated adenylate cyclase in rat renal cortex. Am J Physiol. 1982 Jun;242(6):F721–F726. doi: 10.1152/ajprenal.1982.242.6.F721. [DOI] [PubMed] [Google Scholar]
  31. Young W. S., 3rd, Kuhar M. J. alpha 2-Adrenergic receptors are associated with renal proximal tubules. Eur J Pharmacol. 1980 Oct 31;67(4):493–495. doi: 10.1016/0014-2999(80)90194-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES