Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Apr;73(4):908–916. doi: 10.1172/JCI111314

In vivo evidence of impaired solute transport by the thick ascending limb in potassium-depleted rats.

H U Gutsche, L N Peterson, D Z Levine
PMCID: PMC425101  PMID: 6707211

Abstract

The objective of this investigation was to determine if thick ascending limb (TAL) solute removal is impaired in potassium-depleted rats, in vivo. We estimated TAL NaCl concentration by measuring in situ conductivity of tubular fluid presented to the early distal site after stop-flow periods of 10-60 s, during which a proximal equilibrium solution remained in contact with the reabsorbing epithelium. This allowed us to calculate the rate constant of the decrease in tubular fluid NaCl concentration and to determine equilibrium values for control, potassium-depleted, and potassium-repleted rats. After 60 s of stop-flow, NaCl concentration of TAL fluid decreased to 18.3 +/- 2.73 mM in control rats, while potassium-depleted rats had values almost twice as high (36.5 +/- 2.97 mM, P less than 0.01). The amount of NaCl remaining after 60 s of stop-flow in K-depleted rats was highly correlated with the plasma K concentration. Calculated rates of NaCl efflux from the TAL appeared to be normal in K-depleted rats while the concentration of NaCl achieved at equilibrium was nearly twice that measured in control rats. Acute systemic administration of KCl by gavage or infusion in K-depleted rats was associated with a decrease in TAL NaCl concentration to normal values. Addition of K to the perfusate, however, did not repair the defect. Our results can best be explained by assigning a special role to the peritubular K concentration. We suggest that the defect in TAL solute removal in K-depletion can be rapidly reversed, because decreases in peritubular K concentration limit Na efflux across the peritubular membrane by decreasing the activity of the Na-K-ATPase pump. We recognize that factors such as regional renal blood flow, local angiotensin II levels, and products of the cyclo-oxygenase enzyme system may play a role.

Full text

PDF
908

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berl T., Linas S. L., Aisenbrey G. A., Anderson R. J. On the mechanism of polyuria in potassium depletion. The role of polydipsia. J Clin Invest. 1977 Sep;60(3):620–625. doi: 10.1172/JCI108813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burg M. B., Green N. Role of monovalent ions in the reabsorption of fluid by isolated perfused proximal renal tubules of the rabbit. Kidney Int. 1976 Sep;10(3):221–228. doi: 10.1038/ki.1976.101. [DOI] [PubMed] [Google Scholar]
  3. Burg M. B. Thick ascending limb of Henle's loop. Kidney Int. 1982 Nov;22(5):454–464. doi: 10.1038/ki.1982.198. [DOI] [PubMed] [Google Scholar]
  4. Burg M., Stoner L., Cardinal J., Green N. Furosemide effect on isolated perfused tubules. Am J Physiol. 1973 Jul;225(1):119–124. doi: 10.1152/ajplegacy.1973.225.1.119. [DOI] [PubMed] [Google Scholar]
  5. Cardinal J., Duchesneau D. Effect of potassium on proximal tubular function. Am J Physiol. 1978 May;234(5):F381–F385. doi: 10.1152/ajprenal.1978.234.5.F381. [DOI] [PubMed] [Google Scholar]
  6. Doucet A., Katz A. I., Morel F. Determination of Na-K-ATPase activity in single segments of the mammalian nephron. Am J Physiol. 1979 Aug;237(2):F105–F113. doi: 10.1152/ajprenal.1979.237.2.F105. [DOI] [PubMed] [Google Scholar]
  7. Eknoyan G., Martinez-Maldonado M., Suki W. N., Richie Y. Renal diluting capacity in the hypokalemic rat. Am J Physiol. 1970 Oct;219(4):933–937. doi: 10.1152/ajplegacy.1970.219.4.933. [DOI] [PubMed] [Google Scholar]
  8. Greger R. Cation selectivity of the isolated perfused cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 1981 Apr;390(1):30–37. doi: 10.1007/BF00582707. [DOI] [PubMed] [Google Scholar]
  9. Greger R. Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A sodium dependent process. Pflugers Arch. 1981 Apr;390(1):38–43. doi: 10.1007/BF00582708. [DOI] [PubMed] [Google Scholar]
  10. Greger R., Schlatter E. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 1981 Nov;392(1):92–94. doi: 10.1007/BF00584588. [DOI] [PubMed] [Google Scholar]
  11. Gutsche H. U. Micro stop flow experiments: a new method for in vivo analysis of the function of the diluting segment. Contrib Nephrol. 1980;19:231–239. doi: 10.1159/000428783. [DOI] [PubMed] [Google Scholar]
  12. Gutsche H. U., Múller-Suur R., Hegel U., Hierholzer K. Electrical conductivity of tubular fluid of the rat nephron. Micropuncture study of the diluting segment in situ. Pflugers Arch. 1980 Jan;383(2):113–121. doi: 10.1007/BF00581871. [DOI] [PubMed] [Google Scholar]
  13. Gutsche H. U., Müller-Ott K., Brunkhorst R., Niedermayer W. Dose-related effects of furosemide, bumetanide, and piretanide on the thick ascending limb function in the rat. Can J Physiol Pharmacol. 1983 Feb;61(2):159–165. doi: 10.1139/y83-024. [DOI] [PubMed] [Google Scholar]
  14. Jamison R. L., Lacy F. B., Pennell J. P., Sanjana V. M. Potassium secretion by the decending limb or pars recta of the juxtamedullary nephron in vivo. Kidney Int. 1976 Apr;9(4):323–332. doi: 10.1038/ki.1976.38. [DOI] [PubMed] [Google Scholar]
  15. Kannegiesser H., Lee J. B. Role of outer renal medullary metabolism in the concentrating defect of K depletion. Am J Physiol. 1971 Jun;220(6):1701–1707. doi: 10.1152/ajplegacy.1971.220.6.1701. [DOI] [PubMed] [Google Scholar]
  16. Levine D. Z., Byers M. K., McLeod R. A., Luisello J. A., Raman S. Loop of Henle bicarbonate accumulation in vivo in the rat. J Clin Invest. 1979 Jan;63(1):59–66. doi: 10.1172/JCI109278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levine D. Z., McLeod R. A., Byers M. K. Flow correlation of loop of Henle potassium influx. Can J Physiol Pharmacol. 1978 Jun;56(3):533–535. doi: 10.1139/y78-084. [DOI] [PubMed] [Google Scholar]
  18. Levine D. Z., Walker T., Nash L. A. Effects of KCl infusions on proximal tubular function in normal and potassium-depleted rats. Kidney Int. 1973 Nov;4(5):318–325. doi: 10.1038/ki.1973.123. [DOI] [PubMed] [Google Scholar]
  19. Linas S. L., Peterson L. N., Anderson R. J., Aisenbrey G. A., Simon F. R., Berl T. Mechanism of renal potassium conservation in the rat. Kidney Int. 1979 Jun;15(6):601–611. doi: 10.1038/ki.1979.79. [DOI] [PubMed] [Google Scholar]
  20. MANITIUS A., LEVITIN H., BECK D., EPSTEIN F. H. On the mechanism of impairment of renal concentrating ability in potassium deficiency. J Clin Invest. 1960 Apr;39:684–692. doi: 10.1172/JCI104084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morgan T., Berliner R. W. A study by continuous microperfusion of water and electrolyte movements in the loop of Henle and distal tubule of the rat. Nephron. 1969;6(3):388–405. doi: 10.1159/000179741. [DOI] [PubMed] [Google Scholar]
  22. Ordóez N. G., Toback F. G., Aithal H. N., Spargo B. J. Zonal changes in renal structure and phospholipid metabolism during reversal of potassium depletion nephropathy. Lab Invest. 1977 Jan;36(1):33–47. [PubMed] [Google Scholar]
  23. Peterson L. N., Wright F. S. Effect of sodium intake on renal potassium excretion. Am J Physiol. 1977 Sep;233(3):F225–F234. doi: 10.1152/ajprenal.1977.233.3.F225. [DOI] [PubMed] [Google Scholar]
  24. Weiner M. W., Sauer L. A., Torretti J., Epstein F. H. Renal mitochondrial enzymes in potassium depletion. Am J Physiol. 1971 Aug;221(2):613–617. doi: 10.1152/ajplegacy.1971.221.2.613. [DOI] [PubMed] [Google Scholar]
  25. Whinnery M. A., Kunau R. T., Jr Effect of potassium deficiency on papillary plasma flow in the rat. Am J Physiol. 1979 Sep;237(3):F226–F231. doi: 10.1152/ajprenal.1979.237.3.F226. [DOI] [PubMed] [Google Scholar]
  26. de Rouffignac C., Morel F. Micropuncture study of water, electrolytes, and urea movements along the loops of henle in psammomys. J Clin Invest. 1969 Mar;48(3):474–486. doi: 10.1172/JCI106005. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES