Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Apr;73(4):923–932. doi: 10.1172/JCI111316

Role of volume in the regulation of vasopressin secretion during pregnancy in the rat.

W M Barron, B A Stamoutsos, M D Lindheimer
PMCID: PMC425103  PMID: 6538580

Abstract

We previously observed that osmoregulation and the osmotic threshold for antidiuretic hormone secretion were altered during pregnancy in Sprague-Dawley rats and the present study evaluated the influence of volume on arginine vasopressin (AVP) release during gestation in this species. Basal plasma osmolality (Posm) and intravascular volume were 297 +/- 3 mosmol/kg and 16.2 +/- 1.2 ml in virgin animals compared with 290 +/- 2 mosmol/kg and 20.2 +/- 2.3 ml in 14-d pregnant rats and 287 +/- 3 mosmol/kg and 25.2 +/- 2.3 ml in 21-d (near-term) pregnant rats (P less than 0.001, each pregnant group vs. virgin). Isosmotic volume depletion was produced by intraperitoneal polyethylene glycol. Volume decreased from 1 to 26% and blood pressure remained stable during decrements as high as 16%. Plasma AVP (PAVP) did not rise significantly in either group of pregnant animals or virgin controls until blood volume depletion reached 6-7%, after which levels rose in a similar exponential manner in virgin, 14-d, and 21-d pregnant animals. In terms of absolute changes, however, PAVP in gravid rats started to increase when intravascular volume was still considerably greater than basal blood volume in the nonpregnant controls. Other experiments, where Posm was increased by intraperitoneal hypertonic saline, reconfirmed that the osmotic threshold for AVP secretion was reduced congruent to 10 mosmol/kg during pregnancy and that AVP release was stimulated by increments in body tonicity as small as 1-2%. In parallel studies, blood volume contraction and increases in Posm were evoked by intraperitoneal polyethylene glycol dissolved in hypertonic saline and results compared with animals receiving intraperitoneal saline alone. Decrements in volume (congruent to 7%), which alone would increase PAVP minimally, increased the sensitivity of the secretory response to changes in osmolality two- to three-fold, an effect which was similar in virgin and gravid animals. Finally, restricting water intake of pregnant rats to that of virgins on days 16-20 of gestation led to suboptimal volume expansion, hypertonicity, and an exaggerated increase in PAVP. These results demonstrate that despite an intravascular space which at term is nearly twice that of virgin rats, pregnant animals secrete AVP in response to fractional volume depletion in a manner similar to nonpregnant controls; that is, the relationship between total blood volume and AVP secretion is altered during gestation such that the expanded blood volume is recognized as normal.

Full text

PDF
923

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander E. A., Churchill S., Bengele H. H. Renal hemodynamics and volume homeostasis during pregnancy in the rat. Kidney Int. 1980 Aug;18(2):173–178. doi: 10.1038/ki.1980.126. [DOI] [PubMed] [Google Scholar]
  2. Atherton J. C., Dark J. M., Garland H. O., Morgan M. R., Pidgeon J., Soni S. Changes in water and electrolyte balance, plasma volume and composition during pregnancy in the rat. J Physiol. 1982 Sep;330:81–93. doi: 10.1113/jphysiol.1982.sp014330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atherton J. C., Pirie S. C. The effect of pregnancy on glomerular filtration rate and salt and water reabsorption in the rat. J Physiol. 1981;319:153–164. doi: 10.1113/jphysiol.1981.sp013898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BELCHER E. H., HARRISS E. B. Studies of plasma volume, red cell volume and total blood volume in young growing rats. J Physiol. 1957 Nov 14;139(1):64–78. doi: 10.1113/jphysiol.1957.sp005875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BROWN M. L., PIKE R. L. Blood volume and serum protein in the deoxypyridoxine-fed rat during pregnancy. J Nutr. 1960 Jun;71:191–199. doi: 10.1093/jn/71.2.191. [DOI] [PubMed] [Google Scholar]
  6. Bichet D., Szatalowicz V., Chaimovitz C., Schrier R. W. Role of vasopressin in abnormal water excretion in cirrhotic patients. Ann Intern Med. 1982 Apr;96(4):413–417. doi: 10.7326/0003-4819-96-4-413. [DOI] [PubMed] [Google Scholar]
  7. Brenner B. M., Berliner R. W. Relationship between extracellular volume and fluid reabsorption by the rat nephron. Am J Physiol. 1969 Jul;217(1):6–12. doi: 10.1152/ajplegacy.1969.217.1.6. [DOI] [PubMed] [Google Scholar]
  8. Davison J. M., Vallotton M. B., Lindheimer M. D. Plasma osmolality and urinary concentration and dilution during and after pregnancy: evidence that lateral recumbency inhibits maximal urinary concentrating ability. Br J Obstet Gynaecol. 1981 May;88(5):472–479. doi: 10.1111/j.1471-0528.1981.tb01019.x. [DOI] [PubMed] [Google Scholar]
  9. Dunn F. L., Brennan T. J., Nelson A. E., Robertson G. L. The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest. 1973 Dec;52(12):3212–3219. doi: 10.1172/JCI107521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Durr J. A., Stamoutsos B., Lindheimer M. D. Osmoregulation during pregnancy in the rat. Evidence for resetting of the threshold for vasopressin secretion during gestation. J Clin Invest. 1981 Aug;68(2):337–346. doi: 10.1172/JCI110261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dürr J. A., Stamoutsos B. A., Barron W. M., Lindheimer M. D. Osmoregulation in the pregnant Brattleboro rat. Ann N Y Acad Sci. 1982;394:481–490. doi: 10.1111/j.1749-6632.1982.tb37459.x. [DOI] [PubMed] [Google Scholar]
  12. Gresson C. R., Bird D. L., Simpson F. O. Plasma volume, extracellular fluid volume and exchangeable sodium concentrations in the New Zealand strain of genetically hypertensive rat. Clin Sci. 1973 Apr;44(4):349–358. doi: 10.1042/cs0440349. [DOI] [PubMed] [Google Scholar]
  13. Husain M. K., Manger W. M., Rock T. W., Weiss R. J., Frantz A. G. Vasopressin release due to manual restraint in the rat: role of body compression and comparison with other stressful stimuli. Endocrinology. 1979 Mar;104(3):641–644. doi: 10.1210/endo-104-3-641. [DOI] [PubMed] [Google Scholar]
  14. Hytten F. E. Physiological changes in early pregnancy. J Obstet Gynaecol Br Commonw. 1968 Dec;75(12):1193–1197. doi: 10.1111/j.1471-0528.1968.tb02915.x. [DOI] [PubMed] [Google Scholar]
  15. Lindheimer M. D., Katz A. I. Kidney function in the pregnant rat. J Lab Clin Med. 1971 Oct;78(4):633–641. [PubMed] [Google Scholar]
  16. Nolph K. D., Twardowski Z. J., Popovich R. P., Rubin J. Equilibration of peritoneal dialysis solutions during long-dwell exchanges. J Lab Clin Med. 1979 Feb;93(2):246–256. [PubMed] [Google Scholar]
  17. Nolten W. E., Ehrlich E. N. Sodium and mineralocorticoids in normal pregnancy. Kidney Int. 1980 Aug;18(2):162–172. doi: 10.1038/ki.1980.125. [DOI] [PubMed] [Google Scholar]
  18. ROSE D. J., BADER M. E., BADER R. A., BRAUNWALD E. Catheterization studies of cardiac hemodynamics in normal pregnant women with reference to left ventricular work. Am J Obstet Gynecol. 1956 Aug;72(2):233–246. doi: 10.1016/0002-9378(56)90107-7. [DOI] [PubMed] [Google Scholar]
  19. Riegger G. A., Liebau G., Kochsiek K. Antidiuretic hormone in congestive heart failure. Am J Med. 1982 Jan;72(1):49–52. doi: 10.1016/0002-9343(82)90576-9. [DOI] [PubMed] [Google Scholar]
  20. Robertson E. G., Cheyne G. A. Plasma biochemistry in relation to oedema of pregnancy. J Obstet Gynaecol Br Commonw. 1972 Sep;79(9):769–776. doi: 10.1111/j.1471-0528.1972.tb12918.x. [DOI] [PubMed] [Google Scholar]
  21. Robertson G. L., Mahr E. A., Athar S., Sinha T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J Clin Invest. 1973 Sep;52(9):2340–2352. doi: 10.1172/JCI107423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robertson G. L., Shelton R. L., Athar S. The osmoregulation of vasopressin. Kidney Int. 1976 Jul;10(1):25–37. doi: 10.1038/ki.1976.76. [DOI] [PubMed] [Google Scholar]
  23. Robertson G. L. The regulation of vasopressin function in health and disease. Recent Prog Horm Res. 1976;33:333–385. doi: 10.1016/b978-0-12-571133-3.50015-5. [DOI] [PubMed] [Google Scholar]
  24. Rodbard D., Munson P. J. Is there an osmotic threshold for vasopressin release? Am J Physiol. 1978 Mar;234(3):E340–E342. doi: 10.1152/ajpendo.1978.234.3.E340. [DOI] [PubMed] [Google Scholar]
  25. Schrier R. W., Berl T., Anderson R. J. Osmotic and nonosmotic control of vasopressin release. Am J Physiol. 1979 Apr;236(4):F321–F332. doi: 10.1152/ajprenal.1979.236.4.F321. [DOI] [PubMed] [Google Scholar]
  26. Shade R. E., Share L. Volume control of plasma antidiuretic hormone concentration following acute blood volume expansion in the anesthetized dog. Endocrinology. 1975 Oct;97(4):1048–1057. doi: 10.1210/endo-97-4-1048. [DOI] [PubMed] [Google Scholar]
  27. Szatalowicz V. L., Arnold P. E., Chaimovitz C., Bichet D., Berl T., Schrier R. W. Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N Engl J Med. 1981 Jul 30;305(5):263–266. doi: 10.1056/NEJM198107303050506. [DOI] [PubMed] [Google Scholar]
  28. Thames M. D., Schmid P. G. Cardiopulmonary receptors with vagal afferents tonically inhibit ADH release in the dog. Am J Physiol. 1979 Sep;237(3):H299–H304. doi: 10.1152/ajpheart.1979.237.3.H299. [DOI] [PubMed] [Google Scholar]
  29. Weitzman R. E., Fisher D. A. Log linear relationship between plasma arginine vasopressin and plasma osmolality. Am J Physiol. 1977 Jul;233(1):E37–E40. doi: 10.1152/ajpendo.1977.233.1.E37. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES