Abstract
Protein C activation by thrombin is significantly accelerated by the endothelial cell surface protein thrombomodulin, Factor Va, or its light chain. In this study we have compared the activation of protein C in the presence of either cofactor and examined the possibility that thrombomodulin and Factor Va-light chain act together to regulate protein C activation by thrombin. At all concentrations of protein C used, thrombomodulin was 20 times more efficient than Factor Va-light chain in accelerating protein C activation by thrombin. Protein C treated with chymotrypsin to remove the amino-terminal 41 amino acids that contain the gamma-carboxyglutamyl residues was activated by the thrombin-thrombomodulin complex at an identical rate to native protein C, whereas the modified protein C was activated by Factor Va-light chain and thrombin at only 5% of the rate obtained by using native protein C. Increasing concentrations of Factor Va-light chain, greater than or equal to 30 nM, inhibited thrombin-thrombomodulin catalyzed protein C activation with complete inhibition observed at 90 nM Factor Va-light chain. On the other hand, increasing thrombomodulin concentrations did not inhibit protein C activation by Factor Va-light chain and thrombin. These reactions in solution mimic, in part, those obtained on endothelial cells where protein C lacking the gamma-carboxyglutamyl domain is activated poorly and Factor Va-light chain at concentrations greater than 50 nM inhibited the activation of native protein C. The results of this study suggest that thrombomodulin and Factor Va-light chain may act in concert to regulate protein C activation by thrombin.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Busch C., Cancilla P. A., DeBault L. E., Goldsmith J. C., Owen W. G. Use of endothelium cultured on microcarriers as a model for the microcirculation. Lab Invest. 1982 Nov;47(5):498–504. [PubMed] [Google Scholar]
- Comp P. C., Jacocks R. M., Ferrell G. L., Esmon C. T. Activation of protein C in vivo. J Clin Invest. 1982 Jul;70(1):127–134. doi: 10.1172/JCI110584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esmon C. T., Esmon N. L., Harris K. W. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem. 1982 Jul 25;257(14):7944–7947. [PubMed] [Google Scholar]
- Esmon C. T., Owen W. G. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2249–2252. doi: 10.1073/pnas.78.4.2249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esmon C. T. The subunit structure of thrombin-activated factor V. Isolation of activated factor V, separation of subunits, and reconstitution of biological activity. J Biol Chem. 1979 Feb 10;254(3):964–973. [PubMed] [Google Scholar]
- Esmon N. L., DeBault L. E., Esmon C. T. Proteolytic formation and properties of gamma-carboxyglutamic acid-domainless protein C. J Biol Chem. 1983 May 10;258(9):5548–5553. [PubMed] [Google Scholar]
- Esmon N. L., Owen W. G., Esmon C. T. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C. J Biol Chem. 1982 Jan 25;257(2):859–864. [PubMed] [Google Scholar]
- Johnson A. E., Esmon N. L., Laue T. M., Esmon C. T. Structural changes required for activation of protein C are induced by Ca2+ binding to a high affinity site that does not contain gamma-carboxyglutamic acid. J Biol Chem. 1983 May 10;258(9):5554–5560. [PubMed] [Google Scholar]
- Kane W. H., Majerus P. W. Purification and characterization of human coagulation factor V. J Biol Chem. 1981 Jan 25;256(2):1002–1007. [PubMed] [Google Scholar]
- Miletich J. P., Jackson C. M., Majerus P. W. Properties of the factor Xa binding site on human platelets. J Biol Chem. 1978 Oct 10;253(19):6908–6916. [PubMed] [Google Scholar]
- Owen W. G., Esmon C. T., Jackson C. M. The conversion of prothrombin to thrombin. I. Characterization of the reaction products formed during the activation of bovine prothrombin. J Biol Chem. 1974 Jan 25;249(2):594–605. [PubMed] [Google Scholar]
- Owen W. G. Evidence for the formation of an ester between thrombin and heparin cofactor. Biochim Biophys Acta. 1975 Oct 20;405(2):380–387. doi: 10.1016/0005-2795(75)90103-8. [DOI] [PubMed] [Google Scholar]
- Salem H. H., Broze G. J., Miletich J. P., Majerus P. W. Human coagulation factor Va is a cofactor for the activation of protein C. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1584–1588. doi: 10.1073/pnas.80.6.1584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salem H. H., Broze G. J., Miletich J. P., Majerus P. W. The light chain of factor Va contains the activity of factor Va that accelerates protein C activation by thrombin. J Biol Chem. 1983 Jul 25;258(14):8531–8534. [PubMed] [Google Scholar]
- Suzuki K., Stenflo J., Dahlbäck B., Teodorsson B. Inactivation of human coagulation factor V by activated protein C. J Biol Chem. 1983 Feb 10;258(3):1914–1920. [PubMed] [Google Scholar]
- Walker F. J., Sexton P. W., Esmon C. T. The inhibition of blood coagulation by activated Protein C through the selective inactivation of activated Factor V. Biochim Biophys Acta. 1979 Dec 7;571(2):333–342. doi: 10.1016/0005-2744(79)90103-7. [DOI] [PubMed] [Google Scholar]
