Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Apr;73(4):1223–1226. doi: 10.1172/JCI111308

Resorption of implanted bone prepared from normal and warfarin-treated rats.

J B Lian, M Tassinari, J Glowacki
PMCID: PMC425136  PMID: 6608532

Abstract

Bone that was virtually depleted of the vitamin K-dependent protein, osteocalcin, and 93% reduced in the concentration of its characteristic amino acid, gamma-carboxyglutamic acid, was obtained from rats treated with warfarin for 6 wk. Osteocalcin-deficient bone particles were resistant to resorption when implanted subcutaneously in normal rats. The relative resorption was 60% of control bone, as measured by histomorphometry as percent of bone particles in the field. Additionally, the number of multinucleated cells around the bone particles was reduced by 54%. These data suggest that osteocalcin is an essential component for bone matrix to elicit progenitor-cell recruitment and differentiation necessary for bone resorption.

Full text

PDF
1223

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Delmas P. D., Stenner D., Wahner H. W., Mann K. G., Riggs B. L. Increase in serum bone gamma-carboxyglutamic acid protein with aging in women. Implications for the mechanism of age-related bone loss. J Clin Invest. 1983 May;71(5):1316–1321. doi: 10.1172/JCI110882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gallop P. M., Lian J. B., Hauschka P. V. Carboxylated calcium-binding proteins and vitamin K. N Engl J Med. 1980 Jun 26;302(26):1460–1466. doi: 10.1056/NEJM198006263022608. [DOI] [PubMed] [Google Scholar]
  3. Glowacki J., Altobelli D., Mulliken J. B. Fate of mineralized and demineralized osseous implants in cranial defects. Calcif Tissue Int. 1981;33(1):71–76. doi: 10.1007/BF02409414. [DOI] [PubMed] [Google Scholar]
  4. Glowacki J. The effects of heparin and protamine on resorption of bone particles. Life Sci. 1983 Sep 12;33(11):1019–1024. doi: 10.1016/0024-3205(83)90655-0. [DOI] [PubMed] [Google Scholar]
  5. Gundberg C. M., Cole D. E., Lian J. B., Reade T. M., Gallop P. M. Serum osteocalcin in the treatment of inherited rickets with 1,25-dihydroxyvitamin D3. J Clin Endocrinol Metab. 1983 May;56(5):1063–1067. doi: 10.1210/jcem-56-5-1063. [DOI] [PubMed] [Google Scholar]
  6. Gundberg C. M., Lian J. B., Gallop P. M. Measurements of gamma-carboxyglutamate and circulating osteocalcin in normal children and adults. Clin Chim Acta. 1983 Feb 28;128(1):1–8. doi: 10.1016/0009-8981(83)90049-9. [DOI] [PubMed] [Google Scholar]
  7. Gundberg C. M., Lian J. B., Gallop P. M., Steinberg J. J. Urinary gamma-carboxyglutamic acid and serum osteocalcin as bone markers: studies in osteoporosis and Paget's disease. J Clin Endocrinol Metab. 1983 Dec;57(6):1221–1225. doi: 10.1210/jcem-57-6-1221. [DOI] [PubMed] [Google Scholar]
  8. Hauschka P. V., Frenkel J., DeMuth R., Gundberg C. M. Presence of osteocalcin and related higher molecular weight 4-carboxyglutamic acid-containing proteins in developing bone. J Biol Chem. 1983 Jan 10;258(1):176–182. [PubMed] [Google Scholar]
  9. Hauschka P. V., Reid M. L. Vitamin D dependence of a calcium-binding protein containing gamma-carboxyglutamic acid in chicken bone. J Biol Chem. 1978 Dec 25;253(24):9063–9068. [PubMed] [Google Scholar]
  10. Lian J. B., Glimcher M. J., Roufosse A. H., Hauschka P. V., Gallop P. M., Cohen-Solal L., Reit B. Alterations of the gamma-carboxyglutamic acid and osteocalcin concentrations in vitamin D-deficient chick bone. J Biol Chem. 1982 May 10;257(9):4999–5003. [PubMed] [Google Scholar]
  11. Malone J. D., Teitelbaum S. L., Griffin G. L., Senior R. M., Kahn A. J. Recruitment of osteoclast precursors by purified bone matrix constituents. J Cell Biol. 1982 Jan;92(1):227–230. doi: 10.1083/jcb.92.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mundy G. R., Poser J. W. Chemotactic activity of the gamma-carboxyglutamic acid containing protein in bone. Calcif Tissue Int. 1983;35(2):164–168. doi: 10.1007/BF02405025. [DOI] [PubMed] [Google Scholar]
  13. Price P. A., Baukol S. A. 1,25-Dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. J Biol Chem. 1980 Dec 25;255(24):11660–11663. [PubMed] [Google Scholar]
  14. Price P. A., Lothringer J. W., Nishimoto S. K. Absence of the vitamin K-dependent bone protein in fetal rat mineral. Evidence for another gamma-carboxyglutamic acid-containing component in bone. J Biol Chem. 1980 Apr 10;255(7):2938–2942. [PubMed] [Google Scholar]
  15. Price P. A., Parthemore J. G., Deftos L. J. New biochemical marker for bone metabolism. Measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J Clin Invest. 1980 Nov;66(5):878–883. doi: 10.1172/JCI109954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Price P. A., Williamson M. K. Effects of warfarin on bone. Studies on the vitamin K-dependent protein of rat bone. J Biol Chem. 1981 Dec 25;256(24):12754–12759. [PubMed] [Google Scholar]
  17. Price P. A., Williamson M. K., Haba T., Dell R. B., Jee W. S. Excessive mineralization with growth plate closure in rats on chronic warfarin treatment. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7734–7738. doi: 10.1073/pnas.79.24.7734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Price P. A., Williamson M. K., Lothringer J. W. Origin of the vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J Biol Chem. 1981 Dec 25;256(24):12760–12766. [PubMed] [Google Scholar]
  19. Stern P. H. The D vitamins and bone. Pharmacol Rev. 1980 Mar;32(1):47–80. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES