Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 May;73(5):1254–1262. doi: 10.1172/JCI111327

Effect of human polymorphonuclear and mononuclear leukocytes on chromosomal and plasmid DNA of Escherichia coli. Role of acid DNase.

M Rozenberg-Arska, J A van Strijp, W P Hoekstra, J Verhoef
PMCID: PMC425146  PMID: 6371056

Abstract

Phagocytosis and killing by polymorphonuclear and mononuclear leukocytes are important host resistance factors against invading microorganisms. Evidence showing that killing is rapidly followed by degradation of bacterial components is limited. Therefore, we studied the fate of Escherichia coli DNA following phagocytosis of E. coli by polymorphonuclear and mononuclear leukocytes. [3H]thymidine-labeled, unencapsulated E. coli PC2166 and E. coli 048K1 were incubated in serum, washed, and added to leukocytes. Uptake and killing of the bacteria and degradation of DNA were measured. Although phagocytosis and killing by mononuclear leukocytes was less efficient than that by polymorphonuclear leukocytes, only mononuclear leukocytes were able to degrade E. coli PC2166 DNA. Within 2 h, 60% of the radioactivity added to mononuclear leukocytes was released into the supernate, of which 40% was acid soluble. DNA of E. coli 048K1 was not degraded. To further analyze the capacity of mononuclear leukocytes to degrade E. coli DNA, chromosomal and plasmid DNA was isolated from ingested bacteria and subjected to agarose gel-electrophoresis. Only chromosomal DNA was degraded after phagocytosis. Plasmid DNA of E. coli carrying a gene coding for ampicillin resistance remained intact for a 2-h period after ingestion, and was still able to transform recipient E. coli cells after this period. Although we observed no DNA degradation during phagocytosis by polymorphonuclear leukocytes, lysates of both polymorphonuclear and mononuclear leukocytes contained acid-DNase activity with a pH optimum of 4.9. However, the DNase activity of mononuclear leukocytes was 20 times higher than that of polymorphonuclear leukocytes. No difference was observed between DNase activity from polymorphonuclear and mononuclear leukocytes from a chronic granulomatous disease patient with DNase activity from control polymorphonuclear and mononuclear leukocytes.

Full text

PDF
1254

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEAUFAY H., BENDALL D. S., BAUDHUIN P., DE DUVE C. Tissue fractionation studies. 12. Intracellular distribution of some dehydrogenases, alkaline deoxyribonuclease and iron in rat-liver tissue. Biochem J. 1959 Dec;73:623–628. doi: 10.1042/bj0730623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  3. Babior B. M. Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med. 1978 Mar 30;298(13):721–725. doi: 10.1056/NEJM197803302981305. [DOI] [PubMed] [Google Scholar]
  4. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bladen H. A., Evans R. T., Mergenhagen S. E. Lesions in Escherichia coli membranes after action of antibody and complement. J Bacteriol. 1966 Jun;91(6):2377–2381. doi: 10.1128/jb.91.6.2377-2381.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bornstein D. L., Weinberg A. N., Swartz M. N. A deoxyribonuclease from rabbit leucocytes. Proc Soc Exp Biol Med. 1966 Mar;121(3):677–681. doi: 10.3181/00379727-121-30859. [DOI] [PubMed] [Google Scholar]
  7. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  8. COHN Z. A. The fate of bacteria within phagocytic cells. I. The degradation of isotopically labeled bacteria by polymorphonuclear leucocytes and macrophages. J Exp Med. 1963 Jan 1;117:27–42. doi: 10.1084/jem.117.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cleaver J. E., Boyer H. W. Solubility and dialysis limits of DNA oligonucleotides. Biochim Biophys Acta. 1972 Mar 14;262(2):116–124. doi: 10.1016/0005-2787(72)90224-9. [DOI] [PubMed] [Google Scholar]
  10. Cosloy S. D., Oishi M. The nature of the transformation process in Escherichia coli K12. Mol Gen Genet. 1973 Jul 31;124(1):1–10. doi: 10.1007/BF00267159. [DOI] [PubMed] [Google Scholar]
  11. Curnutte J. T., Whitten D. M., Babior B. M. Defective superoxide production by granulocytes from patients with chronic granulomatous disease. N Engl J Med. 1974 Mar 14;290(11):593–597. doi: 10.1056/NEJM197403142901104. [DOI] [PubMed] [Google Scholar]
  12. De Duve C., Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–492. doi: 10.1146/annurev.ph.28.030166.002251. [DOI] [PubMed] [Google Scholar]
  13. DeVoe I. W., Storm D. W., Gilchrist J. E. A study of phagocytosis of radio-labeled Staphylococcus epidermidis and on structural events during intracellular degradation. Can J Microbiol. 1973 Apr;19(4):525–530. doi: 10.1139/m73-084. [DOI] [PubMed] [Google Scholar]
  14. Elsbach P., Pettis P., Beckerdite S., Franson R. Effects of phagocytosis by rabbit granulocytes on macromolecular synthesis and degradation in different species of bacteria. J Bacteriol. 1973 Aug;115(2):490–497. doi: 10.1128/jb.115.2.490-497.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eschenbach C. Cytochemischer Nachweis von saurer Desoxyribonuclease im Cytoplasma von Blutzellen. 2. Aktivität der sauren Desoxyribonuclease im Cytoplasma von Leukocyten während akuter Infectionen. Klin Wochenschr. 1971 Sep 1;49(17):949–957. [PubMed] [Google Scholar]
  16. Eschenbach C. Cytochemischer Nachweis von saurer Desoxyribonuclease im Cytoplasma von Blutzellen. 3. Aktivität der sauren Desoxyribonuclease im Cytoplasma von Leukocyten akuter Leukosen im Kindesalter. Klin Wochenschr. 1971 Sep 1;49(17):958–968. doi: 10.1007/BF01489460. [DOI] [PubMed] [Google Scholar]
  17. Friedlander A. M. DNA release as a direct measure of microbial killing by phagocytes. Infect Immun. 1978 Oct;22(1):148–154. doi: 10.1128/iai.22.1.148-154.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Friedlander A. M. DNA release as a direct measure of microbial killing. I. Serum bactericidal activity. J Immunol. 1975 Nov;115(5):1404–1408. [PubMed] [Google Scholar]
  19. Glynn A. A., Howard C. J. The sensitivity to complement of strains of Escherichia coli related to their K antigens. Immunology. 1970 Mar;18(3):331–346. [PMC free article] [PubMed] [Google Scholar]
  20. Goldman J. N., Ruddy S., Austen K. F., Feingold D. S. The serum bactericidal reaction. 3. Antibody and complement requirements for killing a rough Escherichia coli. J Immunol. 1969 Jun;102(6):1379–1387. [PubMed] [Google Scholar]
  21. HIRSCH J. G., COHN Z. A. Degranulation of polymorphonuclear leucocytes following phagocytosis of microorganisms. J Exp Med. 1960 Dec 1;112:1005–1014. doi: 10.1084/jem.112.6.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Holmes B., Page A. R., Good R. A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function. J Clin Invest. 1967 Sep;46(9):1422–1432. doi: 10.1172/JCI105634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kaijser B., Holmgren J., Hanson L. A. The protective effect against E. coli of O and K antibodies of different immunoglobulin classes. Scand J Immunol. 1972;1(1):27–32. doi: 10.1111/j.1365-3083.1972.tb03732.x. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lahav M., Ne'eman N., Adler E., Ginsburg I. Effect of leukocyte hydrolases on bacteria. I. Degradation of 14C-labeled Streptococcus and Staphylococcus by leukocyte lysates in vitro. J Infect Dis. 1974 May;129(5):528–537. doi: 10.1093/infdis/129.5.528. [DOI] [PubMed] [Google Scholar]
  26. Lamers M. C., De Groot E. R., Roos D. Phagocytosis and degradation of DNA-anti-DNA complexes by human phagocytes. I. Assay conditions, quantitative aspects and differences between human blood monocytes and neutrophils. Eur J Immunol. 1981 Oct;11(10):757–764. doi: 10.1002/eji.1830111005. [DOI] [PubMed] [Google Scholar]
  27. Patriarca P., Beckerdite S., Pettis P., Elsbach P. Phospholipid metabolism by phagocytic cells. VII. The degradation and utilization of phospholipids of various microbial species by rabbit granulocytes. Biochim Biophys Acta. 1972 Sep 7;280(1):45–56. [PubMed] [Google Scholar]
  28. Rissing J. P., Buxton T. B., Moore W. L., 3rd, Ozawa T., Moore W. L., Jr Enzyme-linked immunospecific antibody test for detecting antibody to Klebsiella. J Clin Microbiol. 1978 Dec;8(6):704–707. doi: 10.1128/jcm.8.6.704-707.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Robbins J. B., McCracken G. H., Jr, Gotschlich E. C., Orskov F., Orskov I., Hanson L. A. Escherichia coli K1 capsular polysaccharide associated with neonatal meningitis. N Engl J Med. 1974 May 30;290(22):1216–1220. doi: 10.1056/NEJM197405302902202. [DOI] [PubMed] [Google Scholar]
  30. Rozenberg-Arska M., Salters E. C., van Strijp J. A., Hoekstra W. P., Verhoef J. Degradation of Escherichia coli chromosomal and plasmid DNA in serum. J Gen Microbiol. 1984 Jan;130(1):217–222. doi: 10.1099/00221287-130-1-217. [DOI] [PubMed] [Google Scholar]
  31. Spitznagel J. K., Wilson L. A. Normal serum cytotoxicity for P32-labeled smooth Enterobacteriaceae. I. Loss of label, death, and ultrastructural damage. J Bacteriol. 1966 Jan;91(1):393–400. doi: 10.1128/jb.91.1.393-400.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stossel T. P. How do phagocytes eat? Ann Intern Med. 1978 Sep;89(3):398–402. doi: 10.7326/0003-4819-89-3-398. [DOI] [PubMed] [Google Scholar]
  33. Stossel T. P. Phagocytosis (third of three parts). N Engl J Med. 1974 Apr 11;290(15):833–839. doi: 10.1056/NEJM197404112901506. [DOI] [PubMed] [Google Scholar]
  34. Stossel T. P. Phagocytosis: recognition and ingestion. Semin Hematol. 1975 Jan;12(1):83–116. [PubMed] [Google Scholar]
  35. Verhoef J., Peterson P. K., Quie P. G. Kinetics of staphylococcal opsonization, attachment, ingestion and killing by human polymorphonuclear leukocytes: a quantitative assay using [3H]thymidine labeled bacteria. J Immunol Methods. 1977;14(3-4):303–311. doi: 10.1016/0022-1759(77)90141-7. [DOI] [PubMed] [Google Scholar]
  36. Wilkinson P. C. Recognition and response in mononuclear and granular phagocytes. Clin Exp Immunol. 1976 Sep;25(3):355–366. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES