Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 May;73(5):1321–1334. doi: 10.1172/JCI111335

Expiratory flow limitation and the response to breathing a helium-oxygen gas mixture in a canine model of pulmonary emphysema.

S N Mink
PMCID: PMC425154  PMID: 6715539

Abstract

The pathophysiology of reduced maximum expiratory flow in a canine model of pulmonary emphysema was studied, and the results interpreted in terms of the wave-speed theory of flow limitation. According to this theory, maximum expiratory flow is related both to the cross-sectional area and compliance at an airway site where a critical gas velocity is first reached ("choke-point") and to gas density. Pulmonary emphysema was produced by the repeated instillations of the enzyme papain into the airways of six dogs. In five control dogs, a saline solution was instilled. During forced vital capacity deflation, in an open-chest preparation, maximum expiratory flow, choke-point locations, and the response to breathing an 80:20 helium/oxygen gas mixture were determined at multiple lung volumes. To locate choke-points, a pressure measuring device was positioned in the airway to measure lateral and end-on intrabronchial pressures, from which the relevant wave-speed parameters were obtained. In general, the reduced maximum expiratory flow in emphysema can be explained by diminished lung elastic recoil pressure and by altered bronchial pressure-area behavior, which results in a more peripheral location of choke-points that have smaller cross-sectional areas than controls. With respect to the density dependence of maximum expiratory flow, this response did not differ from control values in four dogs with emphysema in which frictional pressure losses upstream from choke-points did not differ on the two gas mixtures. In two dogs with emphysema, however, upstream frictional pressure losses were greater on helium/oxygen than on air, which resulted in a smaller cross-sectional area on helium/oxygen; hence density dependence decreased.

Full text

PDF
1321

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUTLER J., CARO C. G., ALCALA R., DUBOIS A. B. Physiological factors affecting airway resistance in normal subjects and in patients with obstructive respiratory disease. J Clin Invest. 1960 Apr;39:584–591. doi: 10.1172/JCI104071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caldwell E. J. Physiologic and anatomic effects of papain on the rabbit lung. J Appl Physiol. 1971 Sep;31(3):458–465. doi: 10.1152/jappl.1971.31.3.458. [DOI] [PubMed] [Google Scholar]
  3. Christie R. V. THE ELASTIC PROPERTIES OF THE EMPHYSEMATOUS LUNG AND THEIR CLINICAL SIGNIFICANCE. J Clin Invest. 1934 Mar;13(2):295–321. doi: 10.1172/JCI100588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cosio M., Ghezzo H., Hogg J. C., Corbin R., Loveland M., Dosman J., Macklem P. T. The relations between structural changes in small airways and pulmonary-function tests. N Engl J Med. 1978 Jun 8;298(23):1277–1281. doi: 10.1056/NEJM197806082982303. [DOI] [PubMed] [Google Scholar]
  5. DAYMAN H. Mechanics of airflow in health and in emphysema. J Clin Invest. 1951 Nov;30(11):1175–1190. doi: 10.1172/JCI102537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DUBOIS A. B., BOTELHO S. Y., BEDELL G. N., MARSHALL R., COMROE J. H., Jr A rapid plethysmographic method for measuring thoracic gas volume: a comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J Clin Invest. 1956 Mar;35(3):322–326. doi: 10.1172/JCI103281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dawson S. V., Elliott E. A. Wave-speed limitation on expiratory flow-a unifying concept. J Appl Physiol Respir Environ Exerc Physiol. 1977 Sep;43(3):498–515. doi: 10.1152/jappl.1977.43.3.498. [DOI] [PubMed] [Google Scholar]
  8. Dosman J., Bode F., Urbanetti J., Martin R., Macklem P. T. The Use of a Helium-Oxygen Mixture during Maximum Expiratory Flow to Demonstrate Obstruction in Small Airways in Smokers. J Clin Invest. 1975 May;55(5):1090–1099. doi: 10.1172/JCI108010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elliott E. A., Dawson S. V. Test of wave-speed theory of flow limitation in elastic tubes. J Appl Physiol Respir Environ Exerc Physiol. 1977 Sep;43(3):516–522. doi: 10.1152/jappl.1977.43.3.516. [DOI] [PubMed] [Google Scholar]
  10. Hogg J. C., Macklem P. T., Thurlbeck W. M. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med. 1968 Jun 20;278(25):1355–1360. doi: 10.1056/NEJM196806202782501. [DOI] [PubMed] [Google Scholar]
  11. Hyatt R. E., Wilson T. A., Bar-Yishay E. Prediction of maximal expiratory flow in excised human lungs. J Appl Physiol Respir Environ Exerc Physiol. 1980 Jun;48(6):991–998. doi: 10.1152/jappl.1980.48.6.991. [DOI] [PubMed] [Google Scholar]
  12. KOBLET H., WYSS F. Das klinische und funktionelle Bild des genuinen Bronchialkollapses mit Lungenemphysem. Helv Med Acta. 1956 Nov;23(4-5):553–560. [PubMed] [Google Scholar]
  13. LEWIS B. M., LIN T. H., NOE F. E., HAYFORD-WELSING E. J. The measurement of pulmonary diffusing capacity for carbon monoxide by a rebreathing method. J Clin Invest. 1959 Nov;38:2073–2086. doi: 10.1172/JCI103985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LIEBOW A. A. Pulmonary emphysema with special reference to vascular changes. Am Rev Respir Dis. 1959 Jul;80(1 Pt 2):67–93. doi: 10.1164/arrd.1959.80.1P2.67. [DOI] [PubMed] [Google Scholar]
  15. MACKLEM P. T., FRASER R. G., BROWN W. G. BRONCHIAL PRESSURE MEASUREMENTS IN EMPHYSEMA AND BRONCHITIS. J Clin Invest. 1965 Jun;44:897–905. doi: 10.1172/JCI105206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Macklem P. T., Mead J. Factors determining maximum expiratory flow in dogs. J Appl Physiol. 1968 Aug;25(2):159–169. doi: 10.1152/jappl.1968.25.2.159. [DOI] [PubMed] [Google Scholar]
  17. Macklem P. T., Mead J. Resistance of central and peripheral airways measured by a retrograde catheter. J Appl Physiol. 1967 Mar;22(3):395–401. doi: 10.1152/jappl.1967.22.3.395. [DOI] [PubMed] [Google Scholar]
  18. Macklem P. T., Wilson N. J. Measurement of intrabronchial pressure in man. J Appl Physiol. 1965 Jul;20(4):653–663. doi: 10.1152/jappl.1965.20.4.653. [DOI] [PubMed] [Google Scholar]
  19. Mead J., Turner J. M., Macklem P. T., Little J. B. Significance of the relationship between lung recoil and maximum expiratory flow. J Appl Physiol. 1967 Jan;22(1):95–108. doi: 10.1152/jappl.1967.22.1.95. [DOI] [PubMed] [Google Scholar]
  20. Meadows J. A., 3rd, Rodarte J. R., Hyatt R. E. Density dependence of maximal expiratory flow in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1980 Jan;121(1):47–53. doi: 10.1164/arrd.1980.121.1.47. [DOI] [PubMed] [Google Scholar]
  21. Mink S. N., Light R. B., Wood L. D. Effect of pneumococcal lobar pneumonia on canine lung mechanics. J Appl Physiol Respir Environ Exerc Physiol. 1981 Feb;50(2):283–291. doi: 10.1152/jappl.1981.50.2.283. [DOI] [PubMed] [Google Scholar]
  22. Mink S. N. Mechanism of reduced maximum expiratory flow in methacholine-induced bronchoconstriction in dogs. J Appl Physiol Respir Environ Exerc Physiol. 1983 Sep;55(3):897–912. doi: 10.1152/jappl.1983.55.3.897. [DOI] [PubMed] [Google Scholar]
  23. Mink S. N., Wood L. D. How does HeO2 increase maximum expiratory flow in human lungs? J Clin Invest. 1980 Oct;66(4):720–729. doi: 10.1172/JCI109909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mink S., Ziesmann M., Wood L. D. Mechanisms of increased maximum expiratory flow during HeO2 breathing in dogs. J Appl Physiol Respir Environ Exerc Physiol. 1979 Sep;47(3):490–502. doi: 10.1152/jappl.1979.47.3.490. [DOI] [PubMed] [Google Scholar]
  25. Pedersen O. F., Castile R. G., Drazen J. M., Ingram R. H., Jr Density dependence of maximum expiratory flow in the dog. J Appl Physiol Respir Environ Exerc Physiol. 1982 Aug;53(2):397–404. doi: 10.1152/jappl.1982.53.2.397. [DOI] [PubMed] [Google Scholar]
  26. Pedersen O. F., Thiessen B., Lyager S. Airway compliance and flow limitation during forced expiration in dogs. J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):357–369. doi: 10.1152/jappl.1982.52.2.357. [DOI] [PubMed] [Google Scholar]
  27. Pride N. B., Permutt S., Riley R. L., Bromberger-Barnea B. Determinants of maximal expiratory flow from the lungs. J Appl Physiol. 1967 Nov;23(5):646–662. doi: 10.1152/jappl.1967.23.5.646. [DOI] [PubMed] [Google Scholar]
  28. Pushpakom R., Hogg J. C., Woolcock A. J., Angus A. E., Macklem P. T., Thurlbeck W. M. Experimental papain-induced emphysema in dogs. Am Rev Respir Dis. 1970 Nov;102(5):778–789. doi: 10.1164/arrd.1970.102.5.778. [DOI] [PubMed] [Google Scholar]
  29. Takaro T., White S. M. Unilateral severe experimental pulmonary emphysema. Am Rev Respir Dis. 1973 Aug;108(2):334–342. doi: 10.1164/arrd.1973.108.2.334. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES