Abstract
To assess the role of the early postnatal surge in plasma thyroid hormone concentrations on cardiovascular and metabolic adaptations, we measured cardiac output, total oxygen consumption, and plasma triiodothyronine (T3) concentrations in three groups of lambs in the first 6 h after delivery. 15 fetal lambs were prepared at gestational ages of 128-129 d by placing catheters in the brachiocephalic artery, descending aorta, distal inferior vena cava, left atrium, and pulmonary artery so that measurements could be made soon after delivery. They were divided into three groups: Group I comprised five control animals; Group II consisted of five fetuses in which thyroidectomy was performed at surgery at 129 d gestation; and Group III consisted of five animals in which thyroidectomy was performed at term gestation during delivery by caesarian section, prior to severing the umbilical cord. The lambs in Group I exhibited a rapid postnatal rise in T3 concentrations, similar to that described previously, reaching a peak value of about 5 ng/ml. Although the postnatal surge in T3 concentration was arrested in Group II and III animals, Group II had no detectable plasma T3, while the Group III animals had T3 concentrations of about 0.8 ng/ml, which were within the range previously reported for term lamb fetuses. The lambs in group II showed 40-50% lower left ventricular outputs (190 vs. 297 ml/kg per min), systemic blood flows (155 vs. 286 ml/kg per min), and oxygen consumptions (9.8 vs. 20.2 ml/kg per min) as compared with Group I animals over the entire 6-h period. The lambs in Group II also had significantly lower heart rates (131 vs. 192 beats/min) and mean systemic arterial pressures (56 vs. 72 torr). However, there were no significant differences for any of these measurements between the Group III and Group I lambs. The reduction in cardiac output in the Group II animals were reflected in a significantly lower blood flow to the peripheral circulation, but there were no significant differences in blood flow to other organs in the three groups. These studies indicate that plasma thyroid concentrations in the 2-3 wk prior to delivery and not the increase in thyroid hormone concentrations which occur after birth are important for postnatal cardiovascular and metabolic adjustments. We speculate that lack of circulating triiodothyronine in late gestation may affect postnatal cardiovascular adaptation by modifying normal beta adrenergic receptor development.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baer R. W., Payne B. D., Verrier E. D., Vlahakes G. J., Molodowitch D., Uhlig P. N., Hoffman J. I. Increased number of myocardial blood flow measurements with radionuclide-labeled microspheres. Am J Physiol. 1984 Mar;246(3 Pt 2):H418–H434. doi: 10.1152/ajpheart.1984.246.3.H418. [DOI] [PubMed] [Google Scholar]
- Battaglia F. C., Meschia G. Principal substrates of fetal metabolism. Physiol Rev. 1978 Apr;58(2):499–527. doi: 10.1152/physrev.1978.58.2.499. [DOI] [PubMed] [Google Scholar]
- Bland R. D. Cord-blood total protein level as a screening aid for the idiopathic respiratory-distress syndrome. N Engl J Med. 1972 Jul 6;287(1):9–13. doi: 10.1056/NEJM197207062870103. [DOI] [PubMed] [Google Scholar]
- Boyd R. D., Morriss F. H., Jr, Meschia G., Makowski E. L., Battaglia F. C. Growth of glucose and oxygen uptakes by fetuses of fed and starved ewes. Am J Physiol. 1973 Oct;225(4):897–902. doi: 10.1152/ajplegacy.1973.225.4.897. [DOI] [PubMed] [Google Scholar]
- Buccino R. A., Spann J. F., Jr, Pool P. E., Sonnenblick E. H., Braunwald E. Influence of the thyroid state on the intrinsic contractile properties and energy stores of the myocardium. J Clin Invest. 1967 Oct;46(10):1669–1682. doi: 10.1172/JCI105658. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher D. A., Dussault J. H., Sack J., Chopra I. J. Ontogenesis of hypothalamic--pituitary--thyroid function and metabolism in man, sheep, and rat. Recent Prog Horm Res. 1976;33:59–116. doi: 10.1016/b978-0-12-571133-3.50010-6. [DOI] [PubMed] [Google Scholar]
- Flink I. L., Morkin E. Evidence for a new cardiac myosin species in thyrotoxic rabbit. FEBS Lett. 1977 Sep 15;81(2):391–394. doi: 10.1016/0014-5793(77)80561-9. [DOI] [PubMed] [Google Scholar]
- Gilbert R. D. Control of fetal cardiac output during changes in blood volume. Am J Physiol. 1980 Jan;238(1):H80–H86. doi: 10.1152/ajpheart.1980.238.1.H80. [DOI] [PubMed] [Google Scholar]
- Iwamoto H. S., Rudolph A. M. Chronic renal venous catheterization in fetal sheep. Am J Physiol. 1983 Sep;245(3):H524–H527. doi: 10.1152/ajpheart.1983.245.3.H524. [DOI] [PubMed] [Google Scholar]
- Klopfenstein H. S., Rudolph A. M. Postnatal changes in the circulation and responses to volume loading in sheep. Circ Res. 1978 Jun;42(6):839–845. doi: 10.1161/01.res.42.6.839. [DOI] [PubMed] [Google Scholar]
- Kuipers J. R., Sidi D., Heymann M. A., Rudolph A. M. Comparison of methods of measuring cardiac output in newborn lambs. Pediatr Res. 1982 Aug;16(8):594–598. doi: 10.1203/00006450-198208000-00002. [DOI] [PubMed] [Google Scholar]
- Levey G. S., Epstein S. E. Myocardial adenyl cyclase: activation by thyroid hormones and evidence for two adenyl cyclase systems. J Clin Invest. 1969 Sep;48(9):1663–1669. doi: 10.1172/JCI106131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lister G., Walter T. K., Versmold H. T., Dallman P. R., Rudolph A. M. Oxygen delivery in lambs: cardiovascular and hematologic development. Am J Physiol. 1979 Dec;237(6):H668–H675. doi: 10.1152/ajpheart.1979.237.6.H668. [DOI] [PubMed] [Google Scholar]
- Margolius H. S., Gaffney T. E. The effects of injected norepinephrine and sympathetic nerve stimulation in hypothyroid and hyperthyroid dogs. J Pharmacol Exp Ther. 1965 Sep;149(3):329–335. [PubMed] [Google Scholar]
- Morkin E. Stimulation of cardiac myosin adenosine triphosphatase in thyrotoxicosis. Circ Res. 1979 Jan;44(1):1–7. doi: 10.1161/01.res.44.1.1. [DOI] [PubMed] [Google Scholar]
- Nathanielsz P. W., Silver M., Comline R. S. Plasma tri-iodothyronine concentration in the foetal and newborn lamb. J Endocrinol. 1973 Sep;58(3):683–684. doi: 10.1677/joe.0.0580683. [DOI] [PubMed] [Google Scholar]
- Nishiki K., Erecińska M., Wilson D. F., Cooper S. Evaluation of oxidative phosphorylation in hearts from euthyroid, hypothyroid, and hyperthyroid rats. Am J Physiol. 1978 Nov;235(5):C212–C219. doi: 10.1152/ajpcell.1978.235.5.C212. [DOI] [PubMed] [Google Scholar]
- Padbury J. F., Diakomanolis E. S., Hobel C. J., Perelman A., Fisher D. A. Neonatal adaptation: sympatho-adrenal response to umbilical cord cutting. Pediatr Res. 1981 Dec;15(12):1483–1487. doi: 10.1203/00006450-198112000-00005. [DOI] [PubMed] [Google Scholar]
- Philipson K. D., Edelman I. S. Thyroid hormone control of Na+-K+-ATPase and K+-dependent phosphatase in rat heart. Am J Physiol. 1977 May;232(5):C196–C201. doi: 10.1152/ajpcell.1977.232.5.C196. [DOI] [PubMed] [Google Scholar]
- Romero T., Covell J., Friedman W. F. A comparison of pressure-volume relations of the fetal, newborn, and adult heart. Am J Physiol. 1972 May;222(5):1285–1290. doi: 10.1152/ajplegacy.1972.222.5.1285. [DOI] [PubMed] [Google Scholar]
- Rudolph A. M., Heymann M. A. Circulatory changes during growth in the fetal lamb. Circ Res. 1970 Mar;26(3):289–299. doi: 10.1161/01.res.26.3.289. [DOI] [PubMed] [Google Scholar]
- SANDLER G., WILSON G. M. The production of cardiac hypertrophy by thyroxine in the rat. Q J Exp Physiol Cogn Med Sci. 1959 Jul;44:282–289. doi: 10.1113/expphysiol.1959.sp001401. [DOI] [PubMed] [Google Scholar]
- Sidi D., Kuipers J. R., Heymann M. A., Rudolph A. M. Effects of ambient temperature on oxygen consumption and the circulation in newborn lambs at rest and during hypoxemia. Pediatr Res. 1983 Apr;17(4):254–258. doi: 10.1203/00006450-198304000-00004. [DOI] [PubMed] [Google Scholar]
- Skelton C. L., Coleman H. N., Wildenthal K., Braunwald E. Augmentation of myocardial oxygen consumption in hyperthyroid cats. Circ Res. 1970 Sep;27(3):301–309. doi: 10.1161/01.res.27.3.301. [DOI] [PubMed] [Google Scholar]
- Skelton C. L., Karch F. E., Wildenthal K. Lack of acute effects of thyroid hormones on myocardial contractility. Am J Physiol. 1973 Apr;224(4):957–962. doi: 10.1152/ajplegacy.1973.224.4.957. [DOI] [PubMed] [Google Scholar]
- Taylor R. R., Covell J. W., Ross J., Jr Influence of the thyroid state on left ventricular tension-velocity relations in the intact, sedated dog. J Clin Invest. 1969 Apr;48(4):775–784. doi: 10.1172/JCI106035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Werner S. C., Nauman J. A. The thyroid. Annu Rev Physiol. 1968;30:213–244. doi: 10.1146/annurev.ph.30.030168.001241. [DOI] [PubMed] [Google Scholar]
- Whitsett J. A., Noguchi A., Moore J. J. Developmental aspects of alpha- and beta-adrenergic receptors. Semin Perinatol. 1982 Apr;6(2):125–141. [PubMed] [Google Scholar]
- Whitsett J. A., Pollinger J., Matz S. beta-Adrenergic receptors and catecholamine sensitive adenylate cyclase in developing rat ventricular myocardium: effect of thyroid status. Pediatr Res. 1982 Jun;16(6):463–469. doi: 10.1203/00006450-198206000-00012. [DOI] [PubMed] [Google Scholar]
- Williams L. T., Lefkowitz R. J., Watanabe A. M., Hathaway D. R., Besch H. R., Jr Thyroid hormone regulation of beta-adrenergic receptor number. J Biol Chem. 1977 Apr 25;252(8):2787–2789. [PubMed] [Google Scholar]
- van der Schoot J. B., Moran N. C. An experimental evaluation of the reputed influence of thyroxine on the cardiovascular effects of catecholamines. J Pharmacol Exp Ther. 1965 Sep;149(3):336–345. [PubMed] [Google Scholar]