Abstract
The mechanism of action of gastrin was investigated using cytochemical quantitation of hydroxyl ion production (HIP) in guinea pig gastric oxyntic mucosa. The reaction depends upon the trapping of OH ions produced during gastric stimulation and is blocked by the benzimidazole, Hassle 149/94, which inhibits the K+ + H+-ATPase and by acetazolamide, an inhibitor of carbonic anhydrase activity. It is thus a measure of hydroxyl ions produced during stimulation of the oxyntic cell and reflects upon hydrogen ion production. Gastrin (2.5 X 10(-16) -2.5 X 10(-12) M) caused a linear dose-dependent stimulation of HIP in the oxyntic cells. The response was biphasic, with an early peak at 90 s and a secondary rise at 240 s, which persisted for 10 min. Natural human gastrin (sulfated and nonsulfated) and the active COOH-terminal octapeptide fragment of gastrin stimulated HIP, whereas the biologically inert NH2-terminal (1-13) fragment of gastrin had no effect. The activation of oxyntic cell HIP by gastrin was neutralized by an antiserum directed towards the COOH-terminus of gastrin and not by nonimmune serum. Cimetidine (10(-5) M) blocked 25% and atropine (10(-5) M) had no effect on gastrin-stimulated HIP. EGTA (10(-3) M) and LaCl3 (10(-3) M) inhibited the action of gastrin by 67 and 52%, respectively. The calmodulin antagonists, trifluoperazine (10(-5) M), pimozide (10(-5) M), and the naphthalene sulfonamides, W-7 and W-13 (10(-5) M), inhibited gastrin-stimulated HIP by 45.6 38.5, 42.3, and 37.2%, respectively. Higher doses of W-7 and W-13 (10(-4) M) inhibited gastrin-stimulated HIP by 83 and 67%. The Ca2+ ionophore, A23187 (10(-4) M), stimulated HIP. Thus, it appears that gastrin stimulation of HIP is complex. 25% of its action is via a histamine-dependent pathway. 45% of its action is dependent upon extracellular Ca2+. Its action is also in part dependent upon a Ca2+/calmodulin mechanism.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berglindh T., Sachs G., Takeguchi N. Ca2+-dependent secretagogue stimulation in isolated rabbit gastric glands. Am J Physiol. 1980 Aug;239(2):G90–G94. doi: 10.1152/ajpgi.1980.239.2.G90. [DOI] [PubMed] [Google Scholar]
- Bitensky L., Alaghband-Zadeh J., Chayen J. Studies on thyroid stimulating hormone and the long-acting thyroid stimulating hormone. Clin Endocrinol (Oxf) 1974 Jul;3(3):363–374. doi: 10.1111/j.1365-2265.1974.tb01811.x. [DOI] [PubMed] [Google Scholar]
- Chambers D. J., Dunham J., Zanelli J. M., Parsons J. A., Bitensky L., Chayen J. A sensitive bioassay of parathyroid hormone in plasma. Clin Endocrinol (Oxf) 1978 Oct;9(4):375–379. doi: 10.1111/j.1365-2265.1978.tb02223.x. [DOI] [PubMed] [Google Scholar]
- Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
- Chew C. S., Hersey S. J. Gastrin stimulation of isolated gastric glands. Am J Physiol. 1982 May;242(5):G504–G512. doi: 10.1152/ajpgi.1982.242.5.G504. [DOI] [PubMed] [Google Scholar]
- Conn P. M., Rogers D. C., Sheffield T. Inhibition of gonadotropin-releasing hormone-stimulated luteinizing hormone release by pimozide: evidence for a site of action after calcium mobilization. Endocrinology. 1981 Oct;109(4):1122–1126. doi: 10.1210/endo-109-4-1122. [DOI] [PubMed] [Google Scholar]
- Daly J. R., Alaghband-Zadeh J., Loveridge N., Chayen J. The cytochemical bioassay of corticotropin (ACTH). Ann N Y Acad Sci. 1977 Oct 28;297:242–259. doi: 10.1111/j.1749-6632.1977.tb41857.x. [DOI] [PubMed] [Google Scholar]
- Fellenius E., Berglindh T., Sachs G., Olbe L., Elander B., Sjöstrand S. E., Wallmark B. Substituted benzimidazoles inhibit gastric acid secretion by blocking (H+ + K+)ATPase. Nature. 1981 Mar 12;290(5802):159–161. doi: 10.1038/290159a0. [DOI] [PubMed] [Google Scholar]
- Hansson H. P. Histochemical demonstration of carbonic anhydrase activity. Histochemie. 1967;11(2):112–128. doi: 10.1007/BF00571716. [DOI] [PubMed] [Google Scholar]
- Hidaka H., Asano M., Tanaka T. Activity-structure relationship of calmodulin antagonists, Naphthalenesulfonamide derivatives. Mol Pharmacol. 1981 Nov;20(3):571–578. [PubMed] [Google Scholar]
- Langer G. A., Frank J. S. Lanthanum in heart cell culture. Effect on calcium exchange correlated with its localization. J Cell Biol. 1972 Sep;54(3):441–455. doi: 10.1083/jcb.54.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loveridge N. A quantitative cytochemical method for measuring carbonic anhydrase activity. Histochem J. 1978 May;10(3):361–372. doi: 10.1007/BF01007566. [DOI] [PubMed] [Google Scholar]
- Loveridge N., Bitensky L., Chayen J. A possible biological role of the 'biologically inactive' region of polypeptide hormones. J Immunoassay. 1981;2(2):89–97. doi: 10.1080/15321818108056969. [DOI] [PubMed] [Google Scholar]
- Loveridge N., Bloom S. R., Welbourn R. B., Chayen J. Quantitative cytochemical estimation of the effect of pentagastrin (0.005-5 pg-ml) and of plasma gastrin on the guinea-pig fundus in vitro. Clin Endocrinol (Oxf) 1974 Jul;3(3):389–396. doi: 10.1111/j.1365-2265.1974.tb01814.x. [DOI] [PubMed] [Google Scholar]
- Lönnerholm G. Carbonic anhydrase histochemistry, a critical study of Hansson's cobalt-phosphate method. Acta Physiol Scand Suppl. 1974;418:1–43. [PubMed] [Google Scholar]
- Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
- Osborn M., Weber K. Damage of cellular functions by trifluoperazine, a calmodulin-specific drug. Exp Cell Res. 1980 Dec;130(2):484–488. doi: 10.1016/0014-4827(80)90033-6. [DOI] [PubMed] [Google Scholar]
- Penney J. B., Jr, Pan H. S., Young A. B., Frey K. A., Dauth G. W. Quantitative autoradiography of [3H]muscimol binding in rat brain. Science. 1981 Nov 27;214(4524):1036–1038. doi: 10.1126/science.6272394. [DOI] [PubMed] [Google Scholar]
- Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
- Rehfeld J. F. Gastrointestinal hormones. Int Rev Physiol. 1979;19:291–321. [PubMed] [Google Scholar]
- Sabina R. L., Swain J. L., Patten B. M., Ashizawa T., O'Brien W. E., Holmes E. W. Disruption of the purine nucleotide cycle. A potential explanation for muscle dysfunction in myoadenylate deaminase deficiency. J Clin Invest. 1980 Dec;66(6):1419–1423. doi: 10.1172/JCI109995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salganik R. I., Bersimbaev R. I., Argutinskaya S. V., Kiseleva E. V., Khristolyubova N. B., Deribas V. I. Integration of biochemical functions of different cells of rat gastric mucosa for hydrochloric acid secretion. Mol Cell Biochem. 1976 Sep 30;12(3):181–191. doi: 10.1007/BF01741716. [DOI] [PubMed] [Google Scholar]
- Schatzman R. C., Raynor R. L., Kuo J. F. N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide(W-7), a calmodulin antagonist, also inhibits phospholipid-sensitive calcium-dependent protein kinase. Biochim Biophys Acta. 1983 Jan 4;755(1):144–147. doi: 10.1016/0304-4165(83)90284-2. [DOI] [PubMed] [Google Scholar]
- Shapiro B., Pienta K., Heldsinger A., Vinik A. I. Somatostatin is an agonist and noncompetitive antagonist of gastrin in oxyntic cell function. Endocrinology. 1981 Oct;109(4):1117–1121. doi: 10.1210/endo-109-4-1117. [DOI] [PubMed] [Google Scholar]
- Soll A. H., Lewin K., Beaven M. A. Isolation of histamine-containing cells from canine fundic mucosa. Gastroenterology. 1979 Dec;77(6):1283–1290. [PubMed] [Google Scholar]
- Soll A. H. Secretagogue stimulation of [14C]aminopyrine accumulation by isolated canine parietal cells. Am J Physiol. 1980 Apr;238(4):G366–G375. doi: 10.1152/ajpgi.1980.238.4.G366. [DOI] [PubMed] [Google Scholar]
- Soll A. H. The actions of secretagogues on oxygen uptake by isolated mammalian parietal cells. J Clin Invest. 1978 Feb;61(2):370–380. doi: 10.1172/JCI108947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soll A. H., Walsh J. H. Regulation of gastric acid secretion. Annu Rev Physiol. 1979;41:35–53. doi: 10.1146/annurev.ph.41.030179.000343. [DOI] [PubMed] [Google Scholar]
- Soll A. H., Wollin A. Histamine and cyclic AMP in isolated canine parietal cells. Am J Physiol. 1979 Nov;237(5):E444–E450. doi: 10.1152/ajpendo.1979.237.5.E444. [DOI] [PubMed] [Google Scholar]
- TRACY H. J., GREGORY R. A. PHYSIOLOGICAL PROPERTIES OF A SERIES OF SYNTHETIC PEPTIDES STRUCTURALLY RELATED TO GASTRIN I. Nature. 1964 Dec 5;204:935–938. doi: 10.1038/204935a0. [DOI] [PubMed] [Google Scholar]
- Takeuchi K., Speir G. R., Johnson L. R. Mucosal gastrin receptor. II. Physical characteristics of binding. Am J Physiol. 1979 Sep;237(3):E295–E300. doi: 10.1152/ajpendo.1979.237.3.E295. [DOI] [PubMed] [Google Scholar]
- Vinik A. I., Grant B. J., Novis B. Gastrins in human antrum, duodenum and peripheral circulation. S Afr Med J. 1975 Feb 22;49(8):255–257. [PubMed] [Google Scholar]
- Vinik A. I., Heldsinger A. A., Skoglund M. L. Evidence for histamine H1 and H2 receptors in guinea-pig oxyntic cells. J Pharmacol Exp Ther. 1983 Oct;227(1):115–121. [PubMed] [Google Scholar]
- Walker W., Vinik A., Heldsinger A., Kaveh R. Role of calcium and calmodulin in activation of the oxyntic cell by histamine and carbamylcholine in the guinea pig. J Clin Invest. 1983 Sep;72(3):955–964. doi: 10.1172/JCI111067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh J. H. Circulating gastrin. Annu Rev Physiol. 1975;37:81–104. doi: 10.1146/annurev.ph.37.030175.000501. [DOI] [PubMed] [Google Scholar]
- Walsh J. H., Grossman M. I. Gastrin (second of two parts). N Engl J Med. 1975 Jun 26;292(26):1377–1384. doi: 10.1056/NEJM197506262922605. [DOI] [PubMed] [Google Scholar]
