Abstract
Vigorous exercise causes a marked increase in cardiac output with only a minimal increase in measureable pulmonary vascular pressures. These changes in pulmonary hemodynamics should affect lung water and solute movement. On nine occasions, we measured the effect of normoxic exercise on lung lymph flow in four sheep and two goats with chronic lymph fistulas (wt = 15-25 kg). In addition, lymph flow was also measured on five occasions in sheep during exercise at reduced barometric pressures (430 and 380 mmHg). During normobaria, the animals ran at 3-5 km/h with 0-10% elevation of the treadmill for 15 to 85 min. Exercise on average caused a 100% increase in cardiac output, a 140% increase in lung lymph flow, and a slight but significant reduction in lymph to plasma concentration ratio (l/p) for total protein and albumin (mol wt = 70,000). There was a significant linear correlation between lymph flow and cardiac output (r = 0.87, P less than 0.01). There was no change in l/p for IgG (mol wt = 150,000) or IgM (mol wt = 900,000) and no significant change in mean pulmonary arterial (Ppa) or mean left atrial (Pla) pressures. Transition from normobaria to hypobaria caused an increase in Ppa but no change in Pla, cardiac output, or lymph flow. Exercise during hypobaria caused increases in lymph flow that were qualitatively similar to changes observed during normobaric exercise: there was a 60% increase in cardiac output, a 90% increase in lymph flow, and an 11% reduction in l/p for total protein. There was no change in l/p for albumin, IgG, or IgM, and no further change in Ppa. The increased lymph flow during normoxic and hypobaric exercise is best explained by an increase in pulmonary vascular surface area for fluid and protein exchange. Our results suggest that the normal ovine lung has the potential to nearly triple the amount of perfused microvascular surface area. This speculation is relevant to the interpretation of lymph flow data from other experiments.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRAUNWALD E., KELLY E. R. The effects of exercise on central blood volume in man. J Clin Invest. 1960 Feb;39:413–419. doi: 10.1172/JCI104052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bland R. D., Demling R. H., Selinger S. L., Staub N. C. Effects of alveolar hypoxia on lung fluid and protein transport in unanesthetized sheep. Circ Res. 1977 Mar;40(3):269–274. doi: 10.1161/01.res.40.3.269. [DOI] [PubMed] [Google Scholar]
- Bowers R. E., Brigham K. L., Owen P. J. Salicylate pulmonary edema: the mechanism in sheep and review of the clinical literature. Am Rev Respir Dis. 1977 Feb;115(2):261–268. doi: 10.1164/arrd.1977.115.2.261. [DOI] [PubMed] [Google Scholar]
- Brigham K. L., Bowers R., Haynes J. Increased sheep lung vascular permeability caused by Escherichia coli endotoxin. Circ Res. 1979 Aug;45(2):292–297. doi: 10.1161/01.res.45.2.292. [DOI] [PubMed] [Google Scholar]
- Buono M. J., Constable S. H., Morton A. R., Rotkis T. C., Stanforth P. R., Wilmore J. H. The effect of an acute bout of exercise on selected pulmonary function measurements. Med Sci Sports Exerc. 1981;13(5):290–293. [PubMed] [Google Scholar]
- Coates G., Belbeck L. W., Gray G. W. Hypobaric hypoxia does not affect lung fluid or protein exchange in awake adult sheep at rest. Can J Physiol Pharmacol. 1983 Jul;61(7):714–716. doi: 10.1139/y83-110. [DOI] [PubMed] [Google Scholar]
- Coates G., Gray G., Mansell A., Nahmias C., Powles A., Sutton J., Webber C. Changes in lung volume, lung density, and distribution of ventilation during hypobaric decompression. J Appl Physiol Respir Environ Exerc Physiol. 1979 Apr;46(4):752–755. doi: 10.1152/jappl.1979.46.4.752. [DOI] [PubMed] [Google Scholar]
- Coates G., Powles A. C., Morrison S. C., Sutton J. R., Webber C. E., Zylak C. J. The effects of intravenous infusion of saline on lung density, lung volumes, nitrogen washout, computed tomographic scans, and chest radiographs in humans. Am Rev Respir Dis. 1983 Jan;127(1):91–96. doi: 10.1164/arrd.1983.127.1.91. [DOI] [PubMed] [Google Scholar]
- DEXTER L., WHITTENBERGER J. L., HAYNES F. W., GOODALE W. T., GORLIN R., SAWYER C. G. Effect of exercise on circulatory dynamics of normal individuals. J Appl Physiol. 1951 Feb;3(8):439–453. doi: 10.1152/jappl.1951.3.8.439. [DOI] [PubMed] [Google Scholar]
- DeFouw D. O., Berendsen P. B. Morphological changes in isolated perfused dog lungs after acute hydrostatic edema. Circ Res. 1978 Jul;43(1):72–82. doi: 10.1161/01.res.43.1.72. [DOI] [PubMed] [Google Scholar]
- Erdmann A. J., 3rd, Vaughan T. R., Jr, Brigham K. L., Woolverton W. C., Staub N. C. Effect of increased vascular pressure on lung fluid balance in unanesthetized sheep. Circ Res. 1975 Sep;37(3):271–284. doi: 10.1161/01.res.37.3.271. [DOI] [PubMed] [Google Scholar]
- Glazier J. B., Hughes J. M., Maloney J. E., West J. B. Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J Appl Physiol. 1969 Jan;26(1):65–76. doi: 10.1152/jappl.1969.26.1.65. [DOI] [PubMed] [Google Scholar]
- Goresky C. A., Cronin R. F., Wangel B. E. Indicator dilution measurements of extravascular water in the lungs. J Clin Invest. 1969 Mar;48(3):487–501. doi: 10.1172/JCI106006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goresky C. A., Warnica J. W., Burgess J. H., Nadeau B. E. Effect of exercise on dilution estimates of extravascular lung water and on the carbon monoxide diffusing capacity in normal adults. Circ Res. 1975 Sep;37(3):379–389. doi: 10.1161/01.res.37.3.379. [DOI] [PubMed] [Google Scholar]
- Grimby G., Saltin B., Wilhelmsen L. Pulmonary flow-volume and pressure-volume relationship during submaximal and maximal exercise in young well-trained men. Bull Physiopathol Respir (Nancy) 1971 Jan-Feb;7(1):157–172. [PubMed] [Google Scholar]
- HOUSTON C. S. Acute pulmonary edema of high altitude. N Engl J Med. 1960 Sep 8;263:478–480. doi: 10.1056/NEJM196009082631003. [DOI] [PubMed] [Google Scholar]
- Hickam J. B., Cargill W. H. EFFECT OF EXERCISE ON CARDIAC OUTPUT AND PULMONARY ARTERIAL PRESSURE IN NORMAL PERSONS AND IN PATIENTS WITH CARDIOVASCULAR DISEASE AND PULMONARY EMPHYSEMA. J Clin Invest. 1948 Jan;27(1):10–23. doi: 10.1172/JCI101912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSON R. L., Jr, SPICER W. S., BISHOP J. M., FORSTER R. E. Pulmonary capillary blood volume, flow and diffusing capacity during exercise. J Appl Physiol. 1960 Sep;15:893–902. doi: 10.1152/jappl.1960.15.5.893. [DOI] [PubMed] [Google Scholar]
- Jaeger J. J., Sylvester J. T., Cymerman A., Berberich J. J., Denniston J. C., Maher J. T. Evidence for increased intrathoracic fluid volume in man at high altitude. J Appl Physiol Respir Environ Exerc Physiol. 1979 Oct;47(4):670–676. doi: 10.1152/jappl.1979.47.4.670. [DOI] [PubMed] [Google Scholar]
- Jefferies A. L., Hamilton P., O'Brodovich H. M. Effect of high-frequency oscillation on lung lymph flow. J Appl Physiol Respir Environ Exerc Physiol. 1983 Nov;55(5):1373–1378. doi: 10.1152/jappl.1983.55.5.1373. [DOI] [PubMed] [Google Scholar]
- Landolt C. C., Matthay M. A., Albertine K. H., Roos P. J., Wiener-Kronish J. P., Staub N. C. Overperfusion, hypoxia, and increased pressure cause only hydrostatic pulmonary edema in anesthetized sheep. Circ Res. 1983 Mar;52(3):335–341. doi: 10.1161/01.res.52.3.335. [DOI] [PubMed] [Google Scholar]
- Maron M. B., Hamilton L. H., Maksud M. G. Alterations in pulmonary function consequent to competitive marathon running. Med Sci Sports. 1979 Fall;11(3):244–249. [PubMed] [Google Scholar]
- Marshall B. E., Soma L. R., Neufeld G. R. Lung water volume at rest and exercise in dogs. J Appl Physiol. 1975 Jul;39(1):7–8. doi: 10.1152/jappl.1975.39.1.7. [DOI] [PubMed] [Google Scholar]
- Marshall B. E., Teichner R. L., Kallos T., Sugerman H. J., Wyche M. Q., Jr, Tantum K. R. Effects of posture and exercise on the pulmonary extravascular water volume in man. J Appl Physiol. 1971 Sep;31(3):375–379. doi: 10.1152/jappl.1971.31.3.375. [DOI] [PubMed] [Google Scholar]
- Maseri A., Caldini P., Harward P., Joshi R. C., Permutt S., Zierler K. L. Determinants of pulmonary vascular volume: recruitment versus distensibility. Circ Res. 1972 Aug;31(2):218–228. doi: 10.1161/01.res.31.2.218. [DOI] [PubMed] [Google Scholar]
- McKechnie J. K., Leary W. P., Noakes T. D., Kallmeyer J. C., MacSearraigh E. T., Olivier L. R. Acute pulmonary oedema in two athletes during a 90-km running race. S Afr Med J. 1979 Aug 18;56(7):261–265. [PubMed] [Google Scholar]
- Mitzner W., Sylvester J. T. Hypoxic vasoconstriction and fluid filtration in pig lungs. J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1065–1071. doi: 10.1152/jappl.1981.51.5.1065. [DOI] [PubMed] [Google Scholar]
- O'Brodovich H. M., Stalcup S. A., Pang L. M., Lipset J. S., Mellins R. B. Bradykinin production and increased pulmonary endothelial permeability during acute respiratory failure in unanesthetized sheep. J Clin Invest. 1981 Feb;67(2):514–522. doi: 10.1172/JCI110061. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- O'Brodovich H., Andrew M., Silver R., Coates G. Assessment of coagulation cascade during air microembolization of the lung. J Appl Physiol Respir Environ Exerc Physiol. 1983 Dec;55(6):1743–1747. doi: 10.1152/jappl.1983.55.6.1743. [DOI] [PubMed] [Google Scholar]
- Ohkuda K., Nakahara K., Binder A., Staub N. C. Venous air emboli in sheep: reversible increase in lung microvascular permeability. J Appl Physiol Respir Environ Exerc Physiol. 1981 Oct;51(4):887–894. doi: 10.1152/jappl.1981.51.4.887. [DOI] [PubMed] [Google Scholar]
- Pang L. M., O'Brodovich H. M., Mellins R. B., Stalcup S. A. Bradykinin-induced increase in pulmonary vascular permeability in hypoxic sheep. J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):370–375. doi: 10.1152/jappl.1982.52.2.370. [DOI] [PubMed] [Google Scholar]
- Parker R. E., Roselli R. J., Harris T. R., Brigham K. L. Effects of graded increases in pulmonary vascular pressures on lung fluid balance in unanesthetized sheep. Circ Res. 1981 Nov;49(5):1164–1172. doi: 10.1161/01.res.49.5.1164. [DOI] [PubMed] [Google Scholar]
- Parving H. H., Rossing N., Nielsen S. L., Lassen N. A. Increased transcapillary escape rate of albumin, IgG, and IgM after plasma volume expansion. Am J Physiol. 1974 Aug;227(2):245–250. doi: 10.1152/ajplegacy.1974.227.2.245. [DOI] [PubMed] [Google Scholar]
- Pietra G. G., Szidon J. P., Leventhal M. M., Fishman A. P. Hemoglobin as a tracer in hemodynamic pulmonary edema. Science. 1969 Dec 26;166(3913):1643–1646. doi: 10.1126/science.166.3913.1643. [DOI] [PubMed] [Google Scholar]
- Pine M. B., Beach P. M., Cottrell T. S., Scola M., Turino G. M. The relationship between right duct lymph flow and extravascular lung water in dogs given alpha-naphthylthiourea. J Clin Invest. 1976 Aug;58(2):482–492. doi: 10.1172/JCI108492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renkin E. M. The microcirculatory society Eugene M. Landis award lecture. Transport pathways through capillary endothelium. Microvasc Res. 1978 Jan;15(1):123–135. doi: 10.1016/0026-2862(78)90013-4. [DOI] [PubMed] [Google Scholar]
- SINGH I., KAPILA C. C., KHANNA P. K., NANDA R. B., RAO B. D. HIGH-ALTITUDE PULMONARY OEDEMA. Lancet. 1965 Jan 30;1(7379):229–234. doi: 10.1016/s0140-6736(65)91520-5. [DOI] [PubMed] [Google Scholar]
- Stalcup S. A., Mellins R. B. Mechanical forces producing pulmonary edema in acute asthma. N Engl J Med. 1977 Sep 15;297(11):592–596. doi: 10.1056/NEJM197709152971107. [DOI] [PubMed] [Google Scholar]
- Staub N. C., Bland R. D., Brigham K. L., Demling R., Erdmann A. J., 3rd, Woolverton W. C. Preparation of chronic lung lymph fistulas in sheep. J Surg Res. 1975 Nov;19(5):315–320. doi: 10.1016/0022-4804(75)90056-6. [DOI] [PubMed] [Google Scholar]
- Staub N. C., Nagano H., Pearce M. L. Pulmonary edema in dogs, especially the sequence of fluid accumulation in lungs. J Appl Physiol. 1967 Feb;22(2):227–240. doi: 10.1152/jappl.1967.22.2.227. [DOI] [PubMed] [Google Scholar]
- Stubbing D. G., Pengelly L. D., Morse J. L., Jones N. L. Pulmonary mechanics during exercise in normal males. J Appl Physiol Respir Environ Exerc Physiol. 1980 Sep;49(3):506–510. doi: 10.1152/jappl.1980.49.3.506. [DOI] [PubMed] [Google Scholar]
- Vaughan T. R., Jr, DeMarino E., Staub N. C. Indicator dilution lung water and capillary blood volume in prolonged heavy exercise in normal men. Am Rev Respir Dis. 1976 Jun;113(6):757–762. doi: 10.1164/arrd.1976.113.6.757. [DOI] [PubMed] [Google Scholar]
- WASSERMAN K., LOEB L., MAYERSON H. S. Capillary permeability to macromolecules. Circ Res. 1955 Nov;3(6):594–603. doi: 10.1161/01.res.3.6.594. [DOI] [PubMed] [Google Scholar]

