Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Feb 28;92(5):1367–1370. doi: 10.1073/pnas.92.5.1367

Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes.

D A Feakes 1, K Shelly 1, M F Hawthorne 1
PMCID: PMC42520  PMID: 7877984

Abstract

The nido-carborane species K[nido-7-CH3(CH2)15-7,8-C2B9H11] has been synthesized for use as an addend for the bilayer membrane of liposomes. Small unilamellar vesicles, composed of distearoylphosphatidylcholine/cholesterol, 1:1, and incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer, have been investigated in vivo. The time-course biodistribution of boron delivered by these liposomes was determined by inductively coupled plasma-atomic emission spectroscopy analyses after the injection of liposomal suspensions in BALB/c mice bearing EMT6 mammary adenocarcinomas. At the low injected doses normally used (approximately 5-10 mg of boron per kg of body weight), peak tumor boron concentrations of approximately 35 micrograms of boron per g of tissue and tumor/blood boron ratios of approximately 8 were achieved. These values are sufficiently high for the successful application of boron neutron capture therapy. The bilayer-embedded boron compound may provide the sole boron source or, alternatively, a concentrated aqueous solution of a hydrophilic boron compound may also be encapsulated within the liposomes to provide a dose enhancement. Thus, the incorporation of both K[nido-7-CH3(CH2)15-7,8-C2B9H11] and the hydrophilic species, Na3[1-(2'-B10H9)-2-NH3B10H8], within the same liposomes demonstrated significantly enhanced biodistribution characteristics, exemplified by maximum tumor boron concentrations of approximately 50 micrograms of boron per g of tissue and tumor/blood boron ratios of approximately 6.

Full text

PDF
1367

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clendenon N. R., Barth R. F., Gordon W. A., Goodman J. H., Alam F., Staubus A. E., Boesel C. P., Yates A. J., Moeschberger M. L., Fairchild R. G. Boron neutron capture therapy of a rat glioma. Neurosurgery. 1990 Jan;26(1):47–55. doi: 10.1097/00006123-199001000-00007. [DOI] [PubMed] [Google Scholar]
  2. Coderre J. A., Kalef-Ezra J. A., Fairchild R. G., Micca P. L., Reinstein L. E., Glass J. D. Boron neutron capture therapy of a murine melanoma. Cancer Res. 1988 Nov 15;48(22):6313–6316. [PubMed] [Google Scholar]
  3. Fairchild R. G., Bond V. P. Current status of 10B-neutron capture therapy: enhancement of tumor dose via beam filtration and dose rate, and the effects of these parameters on minimum boron content: a theoretical evaluation. Int J Radiat Oncol Biol Phys. 1985 Apr;11(4):831–840. doi: 10.1016/0360-3016(85)90318-9. [DOI] [PubMed] [Google Scholar]
  4. Feakes D. A., Shelly K., Knobler C. B., Hawthorne M. F. Na3[B20H17NH3]: synthesis and liposomal delivery to murine tumors. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3029–3033. doi: 10.1073/pnas.91.8.3029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fraley R., Straubinger R. M., Rule G., Springer E. L., Papahadjopoulos D. Liposome-mediated delivery of deoxyribonucleic acid to cells: enhanced efficiency of delivery related to lipid composition and incubation conditions. Biochemistry. 1981 Nov 24;20(24):6978–6987. doi: 10.1021/bi00527a031. [DOI] [PubMed] [Google Scholar]
  6. Gabel D., Holstein H., Larsson B., Gille L., Ericson G., Sacker D., Som P., Fairchild R. G. Quantitative neutron capture radiography for studying the biodistribution of tumor-seeking boron-containing compounds. Cancer Res. 1987 Oct 15;47(20):5451–5454. [PubMed] [Google Scholar]
  7. Shelly K., Feakes D. A., Hawthorne M. F., Schmidt P. G., Krisch T. A., Bauer W. F. Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9039–9043. doi: 10.1073/pnas.89.19.9039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Slatkin D., Micca P., Forman A., Gabel D., Wielopolski L., Fairchild R. Boron uptake in melanoma, cerebrum and blood from Na2B12H11SH and Na4B24H22S2 administered to mice. Biochem Pharmacol. 1986 May 15;35(10):1771–1776. doi: 10.1016/0006-2952(86)90342-4. [DOI] [PubMed] [Google Scholar]
  9. Soloway A. H., Hatanaka H., Davis M. A. Penetration of brain and brain tumor. VII. Tumor-binding sulfhydryl boron compounds. J Med Chem. 1967 Jul;10(4):714–717. doi: 10.1021/jm00316a042. [DOI] [PubMed] [Google Scholar]
  10. Straubinger R. M., Hong K., Friend D. S., Papahadjopoulos D. Endocytosis of liposomes and intracellular fate of encapsulated molecules: encounter with a low pH compartment after internalization in coated vesicles. Cell. 1983 Apr;32(4):1069–1079. doi: 10.1016/0092-8674(83)90291-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES