Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Jul;74(1):231–235. doi: 10.1172/JCI111406

Pyruvate kinase and the "high ATP syndrome".

G E Staal, G Jansen, D Roos
PMCID: PMC425205  PMID: 6736249

Abstract

The erythrocytes of a patient with the so-called "high ATP syndrome" were characterized by a high ATP content and low 2,3-diphosphoglycerate level. The pyruvate kinase activity was specifically increased (about twice the normal level). After separation of the erythrocytes according to age by discontinuous Percoll density centrifugation, the pyruvate kinase activity was found to be increased in all Percoll fractions. Pyruvate kinase of the patient's cells was characterized by a decreased K0.5 for the substrate phosphoenolpyruvate and no inhibition by ATP. The Michaelis constant (Km) value for ADP, the nucleotide specificity, the thermostability, pH optimum, and immunological specific activity were normal. It is concluded that the high pyruvate kinase activity is due to a shift in the R(elaxed) in equilibrium T(ight) equilibrium to the R(elaxed) form.

Full text

PDF
231

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BREWER G. J. A NEW INHERITED ABNORMALITY OF HUMAN ERYTHROCYTES: ELEVATED ERYTHROCYTIC ADENOSINE TRIPHOSPHATE. Biochem Biophys Res Commun. 1965 Feb 3;18:430–434. doi: 10.1016/0006-291x(65)90726-6. [DOI] [PubMed] [Google Scholar]
  2. Beutler E., West C., Blume K. G. The removal of leukocytes and platelets from whole blood. J Lab Clin Med. 1976 Aug;88(2):328–333. [PubMed] [Google Scholar]
  3. Borchardt R. T., Hegazi M. F., Schowen R. L. Determination of O-methylated metabolites of cathecholamines using high-performance liquid chromatography and electrochemical detection. J Chromatogr. 1978 May 11;152(1):253–259. doi: 10.1016/s0021-9673(00)85363-7. [DOI] [PubMed] [Google Scholar]
  4. Elder G. E., Lappin T. R., Lawson B. E., Bridges J. M. Three pyruvate kinase variants with increased affinity for PEP. Br J Haematol. 1981 Mar;47(3):371–381. doi: 10.1111/j.1365-2141.1981.tb02804.x. [DOI] [PubMed] [Google Scholar]
  5. Ibsen K. H. Interrelationships and functions of the pyruvate kinase isozymes and their variant forms: a review. Cancer Res. 1977 Feb;37(2):341–353. [PubMed] [Google Scholar]
  6. JACOBASCH G., SYLLM-RAPOPORT I., ROIGAS H., RAPOPORT S. 2,3-PGASE-MANGEL ALS MOEGLICHE URSACHE ERHOEHTEN ATP-GEHALTES. Clin Chim Acta. 1964 Nov;10:477–478. doi: 10.1016/0009-8981(64)90180-9. [DOI] [PubMed] [Google Scholar]
  7. Jansen G., Rijksen G., de Gast G. C., Staal G. E. Glycolytic enzymes of an erythroleukemic cell line, K562, before and after hemoglobin induction. Exp Hematol. 1983 Aug;11(7):626–638. [PubMed] [Google Scholar]
  8. Jelkmann W., Bauer C. Enzyme activities related to 2,3-P2-glycerate metabolism in embryonic and fetal red cells. Biochem Biophys Res Commun. 1980 Mar 13;93(1):93–99. doi: 10.1016/s0006-291x(80)80250-6. [DOI] [PubMed] [Google Scholar]
  9. Kahn A., Marie J., Garreau H., Sprengers E. D. The genetic system of the L-type pyruvate kinase forms in man. Subunit structure, interrelation and kinetic characteristics of the pyruvate kinase enzymes from erythrocytes and liver. Biochim Biophys Acta. 1978 Mar 14;523(1):59–74. doi: 10.1016/0005-2744(78)90009-8. [DOI] [PubMed] [Google Scholar]
  10. Max-Audit I., Rosa R., Marie J. Pyruvate kinase hyperactivity genetically determined metabolic consequences and molecular characterization. Blood. 1980 Nov;56(5):902–909. [PubMed] [Google Scholar]
  11. Minakami S., Suzuki C., Saito T., Yoshikawa H. Studies on erythrocyte glycolysis. I. Determination of the glycolytic intermediates in human erythrocytes. J Biochem. 1965 Dec;58(6):543–550. doi: 10.1093/oxfordjournals.jbchem.a128240. [DOI] [PubMed] [Google Scholar]
  12. Rennie C. M., Thompson S., Parker A. C., Maddy A. Human erythrocyte fraction in "Percoll" density gradients. Clin Chim Acta. 1979 Oct 15;98(1-2):119–125. doi: 10.1016/0009-8981(79)90172-4. [DOI] [PubMed] [Google Scholar]
  13. Roos D., Weening R. S., Voetman A. A., van Schaik M. L., Bot A. A., Meerhof L. J., Loos J. A. Protection of phagocytic leukocytes by endogenous glutathione: studies in a family with glutathione reductase deficiency. Blood. 1979 May;53(5):851–866. [PubMed] [Google Scholar]
  14. Rosa R., Max-Audit I., Izrael V., Beuzard Y., Thillet J., Rosa J. Hereditary pyruvate kinase abnormalities associated with erythrocytosis. Am J Hematol. 1981;10(1):47–55. doi: 10.1002/ajh.2830100108. [DOI] [PubMed] [Google Scholar]
  15. Staal G. E., Koster J. F., Kamp H., van Milligen-Boersma L., Veeger C. Human erythrocyte pyruvate kinase. Its purification and some properties. Biochim Biophys Acta. 1971 Jan 13;227(1):86–96. doi: 10.1016/0005-2744(71)90170-7. [DOI] [PubMed] [Google Scholar]
  16. Staal G. E., Rijksen G., Vlug A. M., Vromen-van den Bos B., Akkerman J. W., Gorter G., Dierick J., Petermans M. Extreme deficiency of L-type pyruvate kinase with moderate clinical expression. Clin Chim Acta. 1982 Feb 5;118(2-3):241–253. doi: 10.1016/0009-8981(82)90011-0. [DOI] [PubMed] [Google Scholar]
  17. Takegawa S., Fujii H., Miwa S. Change of pyruvate kinase isozymes from M2- to L-type during development of the red cell. Br J Haematol. 1983 Jul;54(3):467–474. doi: 10.1111/j.1365-2141.1983.tb02121.x. [DOI] [PubMed] [Google Scholar]
  18. VALENTINE W. N., TANAKA K. R., MIWA S. A specific erythrocyte glycolytic enzyme defect (pyruvate kinase) in three subjects with congenital non-spherocytic hemolytic anemia. Trans Assoc Am Physicians. 1961;74:100–110. [PubMed] [Google Scholar]
  19. Yeung M. C., Kapoor M. A study of the properties of pyruvate kinase isolated from a mutant of Neurospora crassa: a comparison with the parental enzyme. Int J Biochem. 1983;15(4):523–529. doi: 10.1016/0020-711x(83)90126-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES