Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Jul;74(1):249–261. doi: 10.1172/JCI111408

Effect of ketone bodies on glucose production and utilization in the miniature pig.

M J Müller, U Paschen, H J Seitz
PMCID: PMC425207  PMID: 6376544

Abstract

The effect of ketone bodies on glucose production (Ra) and utilization (Rd) was investigated in the 24-h starved, conscious unrestrained miniature pig. Infusing Na-DL-beta-OH-butyrate (Na-DL-beta-OHB) and thus shifting the blood pH from 7.40 to 7.56 resulted in a decrease of Ra by 52% and of Rd by 45%, as determined by the isotope dilution technique. Simultaneously, the concentrations of arterial insulin and glucagon were slightly enhanced, whereas the plasma levels of glucose, lactate, pyruvate, alanine, alpha-amino-N, and free fatty acids (FFA) were all reduced. Infusion of Na-bicarbonate, which yielded a similar shift in blood pH, did not mimick these effects. Infusion of equimolar amounts of the ketoacid, yielding a blood pH of 7.35, induced similar metabolic alterations with respect to plasma glucose, Ra, Rd, and insulin; however, plasma alanine and alpha-amino-N increased. Infusing different amounts of Na-DL-beta-OHB resulting in plasma steady state levels of ketones from 0.25 to 1.5 mM had similar effects on arterial insulin and glucose kinetics. No dose dependency was observed. Prevention of the Na-DL-beta-OHB-induced hypoalaninemia by simultaneous infusion of alanine (1 mumol/kg X min) did not prevent hypoglycemia. Infusion of Na-DL-beta-OHB plus insulin (0.4 mU/kg X min) showed no additive effect on the inhibition of Ra. Ketones did not inhibit the insulin-stimulated metabolic clearance rate (MCR) for glucose. Infusion of somatostatin (0.2 micrograms/kg X min) initially decreased plasma glucose, Ra, and Rd, which was followed by an increase in plasma glucose and Ra; however, on infusion of somatostatin plus Na-DL-beta-OHB, hypoglycemia and the reduced Ra were maintained. In the anaesthetized 24-h starved miniature pig, Na-DL-beta-OHB infusion decreased the hepatic exchange for glucose, lactate, and FFA, whereas the exchange for glycerol, alanine, and alpha-amino-N as well as liver perfusion rate were unaffected. Simultaneously, portal glucagon and insulin as well as hepatic insulin extraction rate were elevated. Leg exchange for glucose, lactate, glycerol, alanine, alpha-amino-N, and FFA were decreased, while ketone body utilization increased. Repeated infusion of Na-DL-beta-OHB at the fourth, fifth, and sixth day of starvation in the conscious, unrestrained mini-pig resulted in a significant drop in urinary nitrogen (N)-excretion. However, this effect was mimicked by infusing equimolar amounts of Na-bicarbonate. In contrast, when only the ketoacid was given, urinary N-excretion accelerated. To summarize: (a) Ketone bodies decrease endogenous glucose production via an insulin-dependent mechanism; in addition, ketones probably exert a direct inhibitory action on gluconeogenesis. The ketone body-induced hypoalaninemia does not contribute to this effect. (b) The counterregulatory response to hypoglycemia is reduced by ketones. (c) As a consequence of the decrease in R(a), glucose utilization declines during ketone infusion. (d)The insulin-stimulated MCR for glucose is not affected by ketones. (e) Ketones in their physiological moiety do not show a protein-sparing effect.

Full text

PDF
249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allsop J. R., Wolfe R. R., Burke J. F. The realiability of rates of glucose appearance in vivo calculated from constant tracer infusions. Biochem J. 1978 Jun 15;172(3):407–416. doi: 10.1042/bj1720407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balasse E. O. Effect of free fatty acids and ketone bodies on glucose uptake and oxidation in the dog. Horm Metab Res. 1971 Nov;3(6):403–409. doi: 10.1055/s-0028-1094129. [DOI] [PubMed] [Google Scholar]
  3. Balasse E., Couturier E., Franckson J. R. Influence of sodium beta-hydroxybutyrate on glucose and free fatty acid metabolism in normal dogs. Diabetologia. 1967 Dec;3(6):488–493. doi: 10.1007/BF01213566. [DOI] [PubMed] [Google Scholar]
  4. Balasse E., Ooms H. A. Changes in the concentrations of glucose, free fatty acids, insulin and ketone bodies in the blood during sodium beta-hydroxybutyrate infusions in man. Diabetologia. 1968 Jun;4(3):133–135. doi: 10.1007/BF01219433. [DOI] [PubMed] [Google Scholar]
  5. Berger M., Hagg S. A., Goodman M. N., Ruderman N. B. Glucose metabolism in perfused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition. Biochem J. 1976 Aug 15;158(2):191–202. doi: 10.1042/bj1580191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Best J. D., Beard J. C., Taborsky G. J., Jr, Halter J. B., Porte D., Jr Effect of hyperglycemia per se on glucose disposal and clearance in noninsulin-dependent diabetics. J Clin Endocrinol Metab. 1983 Apr;56(4):819–823. doi: 10.1210/jcem-56-4-819. [DOI] [PubMed] [Google Scholar]
  7. Best J. D., Taborsky G. J., Jr, Halter J. B., Porte D., Jr Glucose disposal is not proportional to plasma glucose level in man. Diabetes. 1981 Oct;30(10):847–850. doi: 10.2337/diab.30.10.847. [DOI] [PubMed] [Google Scholar]
  8. Binkiewicz A., Sadeghi-Najad A., Hochman H., Loridan L., Senior B. An effect of ketones on the concentrations of glucose and of free fatty acids in man independent of the release of insulin. J Pediatr. 1974 Feb;84(2):226–231. doi: 10.1016/s0022-3476(74)80606-2. [DOI] [PubMed] [Google Scholar]
  9. Cowan J. S., Hetenyi G., Jr Glucoregulatory responses in normal and diabetic dogs recorded by a new tracer method. Metabolism. 1971 Apr;20(4):360–372. doi: 10.1016/0026-0495(71)90098-9. [DOI] [PubMed] [Google Scholar]
  10. Edwards J. C., Howell S. L., Taylor K. W. Radioimmunoassay of glucagon released from isolated guinea-pig islets of Langrrhans incubated in vitro. Biochim Biophys Acta. 1970 Aug 14;215(2):297–309. doi: 10.1016/0304-4165(70)90028-0. [DOI] [PubMed] [Google Scholar]
  11. Fine A. Preliminary report: the effects of acute acidosis on alanine and glucose metabolism across the liver, gut, kidney, and muscle in the dog. Metabolism. 1983 Apr;32(4):317–319. doi: 10.1016/0026-0495(83)90036-7. [DOI] [PubMed] [Google Scholar]
  12. Féry F., Balasse E. O. Differential effects of sodium acetoacetate and acetoacetic acid infusions on alanine and glutamine metabolism in man. J Clin Invest. 1980 Aug;66(2):323–331. doi: 10.1172/JCI109860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Féry F., Balasse E. O. The alanine-ketone body cycle hypothesis. Metabolism. 1982 Nov;31(11):1179–1179. doi: 10.1016/0026-0495(82)90171-8. [DOI] [PubMed] [Google Scholar]
  14. Gerich J., Davis J., Lorenzi M., Rizza R., Bohannon N., Karam J., Lewis S., Kaplan R., Schultz T., Cryer P. Hormonal mechanisms of recovery from insulin-induced hypoglycemia in man. Am J Physiol. 1979 Apr;236(4):E380–E385. doi: 10.1152/ajpendo.1979.236.4.E380. [DOI] [PubMed] [Google Scholar]
  15. Gottesman I., Mandarino L., Gerich J. Estimation and kinetic analysis of insulin-independent glucose uptake in human subjects. Am J Physiol. 1983 Jun;244(6):E632–E635. doi: 10.1152/ajpendo.1983.244.6.E632. [DOI] [PubMed] [Google Scholar]
  16. Hannaford M. C., Goldstein M. B., Josse R. G., Halperin M. L. Role of acidosis in the protein wasting of fasting in the rat and the rabbit. Can J Physiol Pharmacol. 1982 Mar;60(3):331–334. doi: 10.1139/y82-046. [DOI] [PubMed] [Google Scholar]
  17. Hannaford M. C., Leiter L. A., Josse R. G., Goldstein M. B., Marliss E. B., Halperin M. L. Protein wasting due to acidosis of prolonged fasting. Am J Physiol. 1982 Sep;243(3):E251–E256. doi: 10.1152/ajpendo.1982.243.3.E251. [DOI] [PubMed] [Google Scholar]
  18. Hayashi M., Konishi K., Kameoka A., Mino M. Serum free amino acid depletion in ketotic children. J Nutr Sci Vitaminol (Tokyo) 1981;27(5):449–454. doi: 10.3177/jnsv.27.449. [DOI] [PubMed] [Google Scholar]
  19. Haymond M. W., Pagliara A. S. Ketotic hypoglycaemia. Clin Endocrinol Metab. 1983 Jul;12(2):447–462. doi: 10.1016/s0300-595x(83)80051-6. [DOI] [PubMed] [Google Scholar]
  20. Ishida T., Chou J., Lewis R. M., Hartley C. J., Entman M., Field J. B. The effect of ingestion of meat on hepatic extraction of insulin and glucagon and hepatic glucose output in conscious dogs. Metabolism. 1983 Jun;32(6):558–567. doi: 10.1016/0026-0495(83)90025-2. [DOI] [PubMed] [Google Scholar]
  21. Ishida T., Lewis R. M., Hartley C. J., Entman M. L., Field J. B. Comparison of hepatic extraction of insulin and glucagon in conscious and anesthetized dogs. Endocrinology. 1983 Mar;112(3):1098–1109. doi: 10.1210/endo-112-3-1098. [DOI] [PubMed] [Google Scholar]
  22. Koerker D. J., Halter J. B. Glucoregulation during insulin and glucagon deficiency: role of catecholamines. Am J Physiol. 1982 Sep;243(3):E225–E233. doi: 10.1152/ajpendo.1982.243.3.E225. [DOI] [PubMed] [Google Scholar]
  23. Lemieux G., Vinay P., Robitaille P., Plante G. E., Lussier Y., Martin P. The effect of ketone bodies on renal ammoniogenesis. J Clin Invest. 1971 Sep;50(9):1781–1791. doi: 10.1172/JCI106668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MEBANE D., MADISON L. L. HYPOGLYCEMIC ACTION OF KETONES. I. EFFECTS OF KETONES ON HEPATIC GLUCOSE OUTPUT AND PERIPHERAL GLUCOSE UTILIZATION. J Lab Clin Med. 1964 Feb;63:177–192. [PubMed] [Google Scholar]
  25. Maizels E. Z., Ruderman N. B., Goodman M. N., Lau D. Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat. Biochem J. 1977 Mar 15;162(3):557–568. doi: 10.1042/bj1620557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miles J. M., Haymond M. W., Gerich J. E. Suppression of glucose production and stimulation of insulin secretion by physiological concentrations of ketone bodies in man. J Clin Endocrinol Metab. 1981 Jan;52(1):34–37. doi: 10.1210/jcem-52-1-34. [DOI] [PubMed] [Google Scholar]
  27. Miles J. M., Nissen S. L., Rizza R. A., Gerich J. E., Haymond M. W. Failure of infused beta-hydroxybutyrate to decrease proteolysis in man. Diabetes. 1983 Mar;32(3):197–205. doi: 10.2337/diab.32.3.197. [DOI] [PubMed] [Google Scholar]
  28. Müller M. J., Paschen U., Seitz H. J. Glucose production measured by tracer and balance data in conscious miniature pig. Am J Physiol. 1983 Mar;244(3):E236–E244. doi: 10.1152/ajpendo.1983.244.3.E236. [DOI] [PubMed] [Google Scholar]
  29. Müller M. J., Paschen U., Seitz H. J. Starvation-induced ketone body production in the conscious unrestrained miniature pig. J Nutr. 1982 Jul;112(7):1379–1386. doi: 10.1093/jn/112.7.1379. [DOI] [PubMed] [Google Scholar]
  30. Müller W. A., Aoki T. T., Flatt J. P., Blackburn G. L., Egdahl R. H., Cahill G. F., Jr Effects of beta-hydroxybutyrate, glycerol, and free fatty acid infusions on glucagon and epinephrine secretion in dogs during acute hypoglycemia. Metabolism. 1976 Oct;25(10):1077–1086. doi: 10.1016/0026-0495(76)90015-9. [DOI] [PubMed] [Google Scholar]
  31. Nosadini R., Mcculloch A., Del Prato S., Avogaro A., Alberti K. G. The relationship between alanine and ketone body in vivo. Metabolism. 1982 Nov;31(11):1175–1178. doi: 10.1016/0026-0495(82)90170-6. [DOI] [PubMed] [Google Scholar]
  32. Owen O. E., Reichard G. A., Jr, Markus H., Boden G., Mozzoli M. A., Shuman C. R. Rapid intravenous sodium acetoacetate infusion in man. Metabolic and kinetic responses. J Clin Invest. 1973 Oct;52(10):2606–2616. doi: 10.1172/JCI107453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Palaiologos G., Felig P. Effects of ketone bodies on amino acid metabolism in isolated rat diaphragm. Biochem J. 1976 Mar 15;154(3):709–716. doi: 10.1042/bj1540709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Paschen U., Müller M. J., Seitz H. J. Evaluation of 133Xe washout kinetics by controlled pig liver perfusion in vivo. J Surg Res. 1982 Jun;32(6):586–597. doi: 10.1016/0022-4804(82)90143-3. [DOI] [PubMed] [Google Scholar]
  35. Pawan G. L., Semple S. J. Effect of 3-hydroxybutyrate in obese subjects on very-low-energy diets and during therapeutic starvation. Lancet. 1983 Jan 1;1(8314-5):15–17. doi: 10.1016/s0140-6736(83)91560-x. [DOI] [PubMed] [Google Scholar]
  36. Pi-Sunyer F., Campbell R. G., Hashim S. A. Experimentally induced hyperketonemia and insulin secretion in the dog. Metabolism. 1970 Apr;19(4):263–270. doi: 10.1016/0026-0495(70)90124-1. [DOI] [PubMed] [Google Scholar]
  37. Radziuk J., Norwich K. H., Vranic M. Experimental validation of measurements of glucose turnover in nonsteady state. Am J Physiol. 1978 Jan;234(1):E84–E93. doi: 10.1152/ajpendo.1978.234.1.E84. [DOI] [PubMed] [Google Scholar]
  38. Rizza R. A., Mandarino L. J., Gerich J. E. Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol. 1981 Jun;240(6):E630–E639. doi: 10.1152/ajpendo.1981.240.6.E630. [DOI] [PubMed] [Google Scholar]
  39. Röjdmark S., Bloom G., Chou M. C., Field J. B. Hepatic extraction of exogenous insulin and glucagon in the dog. Endocrinology. 1978 Mar;102(3):806–813. doi: 10.1210/endo-102-3-806. [DOI] [PubMed] [Google Scholar]
  40. Röjdmark S., Bloom G., Chou M. C., Jaspan J. B., Field J. B. Hepatic insulin and glucagon extraction after their augmented secretion in dogs. Am J Physiol. 1978 Jul;235(1):E88–E96. doi: 10.1152/ajpendo.1978.235.1.E88. [DOI] [PubMed] [Google Scholar]
  41. STEELE R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959 Sep 25;82:420–430. doi: 10.1111/j.1749-6632.1959.tb44923.x. [DOI] [PubMed] [Google Scholar]
  42. Seitz H. J., Müller M. J., Krone W., Tarnowski W. Coordinate control of intermediary metabolism in rat liver by the insulin/glucagon ratio during starvation and after glucose refeeding. Regulatory significance of long-chain acyl-CoA and cyclic AMP. Arch Biochem Biophys. 1977 Oct;183(2):647–663. doi: 10.1016/0003-9861(77)90399-x. [DOI] [PubMed] [Google Scholar]
  43. Seitz H. J., Müller M. J., Krone W., Tarnowski W. Rapid conversion by insulin of hepatic intermediary metabolism from glucose production to glucose utilization in the liver of alloxan-diabetic rats. Diabetes. 1977 Dec;26(12):1159–1174. doi: 10.2337/diab.26.12.1159. [DOI] [PubMed] [Google Scholar]
  44. Sherwin R. S., Hendler R. G., Felig P. Effect of diabetes mellitus and insulin on the turnover and metabolic response to ketones in man. Diabetes. 1976 Sep;25(9):776–784. doi: 10.2337/diab.25.9.776. [DOI] [PubMed] [Google Scholar]
  45. Sherwin R. S., Hendler R. G., Felig P. Effect of ketone infusions on amino acid and nitrogen metabolism in man. J Clin Invest. 1975 Jun;55(6):1382–1390. doi: 10.1172/JCI108057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Snell K. Muscle alanine synthesis and hepatic gluconeogenesis. Biochem Soc Trans. 1980 Apr;8(2):205–213. doi: 10.1042/bst0080205. [DOI] [PubMed] [Google Scholar]
  47. Stricker E. M., Rowland N., Saller C. F., Friedman M. I. Homeostasis during hypoglycemia: central control of adrenal secretion and peripheral control of feeding. Science. 1977 Apr 1;196(4285):79–81. doi: 10.1126/science.841345. [DOI] [PubMed] [Google Scholar]
  48. Tse T. F., Clutter W. E., Shah S. D., Cryer P. E. Mechanisms of postprandial glucose counterregulation in man. Physiologic roles of glucagon and epinephrine vis-a-vis insulin in the prevention of hypoglycemia late after glucose ingestion. J Clin Invest. 1983 Jul;72(1):278–286. doi: 10.1172/JCI110967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zwiebel F. M., Schwabe U., Olson M. S., Scholz R. Role of pyruvate transporter in the regulation of the pyruvate dehydrogenase multienzyme complex in perfused rat liver. Biochemistry. 1982 Jan 19;21(2):346–353. doi: 10.1021/bi00531a023. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES