Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Sep;74(3):763–770. doi: 10.1172/JCI111492

Origin of mammalian biliprotein and rearrangement of bilirubin glucuronides in vivo in the rat.

A F McDonagh, L A Palma, J J Lauff, T W Wu
PMCID: PMC425230  PMID: 6470139

Abstract

In hepatobiliary disease bilirubin becomes bound covalently to serum albumin, producing a nondissociable bile pigment-protein complex (biliprotein). To elucidate the mechanism of biliprotein formation we studied the bile pigment composition of blood from animals with experimental cholestasis and carried out comparative studies on the rate of biliprotein formation in vivo and in vitro during incubation of bilirubin glucuronides with albumin. Bile duct ligation in the rat and guinea pig led to rapid accumulation in the circulation of bilirubin, heterogeneous bilirubin esters of glucuronic acid, and a biliprotein that migrated along with albumin on high performance liquid chromatography. When the obstruction was removed, biliprotein remained longer in the circulation than did the other bile pigment species. Biliprotein and heterogeneous bilirubin esters of glucuronic acid were not formed in bile duct-ligated homozygous Gunn rats but they were formed when bilirubin glucuronides were incubated with Sprague-Dawley rat serum or human serum albumin at 37 degrees C in vitro. Bilirubin glucuronide rearrangement in vitro was accompanied by nonenzymic hydrolysis. We conclude that the formation of biliprotein in vivo is probably nonenzymic and suggest that mammalian biliprotein is formed by acyl migration of bilirubin from a bilirubin-glucuronic acid ester to a nucleophilic site on albumin.

Full text

PDF
763

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acocella G., Tenconi L. T., Armas-Merino R., Raia S., Billing B. H. Does deconjugation of bilirubin glucuronide occur in obstructive jaundice? Lancet. 1968 Jan 13;1(7533):68–69. doi: 10.1016/s0140-6736(68)90069-x. [DOI] [PubMed] [Google Scholar]
  2. Blanckaert N., Compernolle F., Leroy P., Van Houtte R., Fevery J., Heirwegh K. P. The fate of bilirubin-IXalpha glucuronide in cholestasis and during storage in vitro. Intramolecular rearrangement to positional isomers of glucuronic acid. Biochem J. 1978 Apr 1;171(1):203–214. doi: 10.1042/bj1710203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blanckaert N., Gollan J., Schmid R. Mechanism of bilirubin diglucuronide formation in intact rats: bilirubin diglucuronide formation in vivo. J Clin Invest. 1980 Jun;65(6):1332–1342. doi: 10.1172/JCI109797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blanckaert N., Kabra P. M., Farina F. A., Stafford B. E., Marton L. J., Schmid R. Measurement of bilirubin and its monoconjugates and diconjugates in human serum by alkaline methanolysis and high-performance liquid chromatography. J Lab Clin Med. 1980 Aug;96(2):198–212. [PubMed] [Google Scholar]
  5. CORA D. On the fluctuations in the diazo reaction rate and in the bilirubin absorbed on serum proteins during the course of jaundices. Acta Med Scand. 1952 Mar 19;142(4):297–313. doi: 10.1111/j.0954-6820.1952.tb13869.x. [DOI] [PubMed] [Google Scholar]
  6. Compernolle F., Van Hees G. P., Blanckaert N., Heirwegh K. P. Glucuronic acid conjugates of bilirubin-IXalpha in normal bile compared with post-obstructive bile. Transformation of the 1-O-acylglucuronide into 2-, 3-, and 4-O-acylglucuronides. Biochem J. 1978 Apr 1;171(1):185–201. doi: 10.1042/bj1710185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Etter-kjelsaas H., Kuenzle C. C. A polypeptide conjugate of bilirubin from human bile. Biochim Biophys Acta. 1975 Jul 21;400(1):83–94. doi: 10.1016/0005-2795(75)90129-4. [DOI] [PubMed] [Google Scholar]
  8. Fevery J., Van Damme B., Michiels R., De Groote J., Heirwegh K. P. Bilirubin conjugates in bile of man and rat in the normal state and in liver disease. J Clin Invest. 1972 Sep;51(9):2482–2492. doi: 10.1172/JCI107062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GREEN N. M. THE APPARENT HIGH REACTIVITY OF SOME AMINO GROUPS OF BOVINE SERUM ALBUMIN. Biochim Biophys Acta. 1963 Aug 13;74:542–543. doi: 10.1016/0006-3002(63)91397-0. [DOI] [PubMed] [Google Scholar]
  10. Gautam A., Seligson H., Gordon E. R., Seligson D., Boyer J. L. Irreversible binding of conjugated bilirubin to albumin in cholestatic rats. J Clin Invest. 1984 Mar;73(3):873–877. doi: 10.1172/JCI111283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gollan J., Hammaker L., Licko V., Schmid R. Bilirubin kinetics in intact rats and isolated perfused liver. Evidence for hepatic deconjugation of bilirubin glucuronides. J Clin Invest. 1981 Apr;67(4):1003–1015. doi: 10.1172/JCI110111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hasegawa J., Smith P. C., Benet L. Z. Apparent intramolecular acyl migration of zomepirac glucuronide. Drug Metab Dispos. 1982 Sep-Oct;10(5):469–473. [PubMed] [Google Scholar]
  13. Hawkins D., Pinckard R. N., Farr R. S. Acetylation of human serum albumin by acetylsalicylic acid. Science. 1968 May 17;160(3829):780–781. doi: 10.1126/science.160.3829.780. [DOI] [PubMed] [Google Scholar]
  14. Jansen P. L. beta-Glucuronidase-resistant bilirubin glucuronide isomers in cholestatic liver disease--determination of bilirubin metabolites in serum by means of high-pressure liquid chromatography. Clin Chim Acta. 1981 Mar 5;110(2-3):309–317. doi: 10.1016/0009-8981(81)90360-0. [DOI] [PubMed] [Google Scholar]
  15. Janssen F. W., Kirkman S. K., Fenselau C., Stogniew M., Hofmann B. R., Young E. M., Ruelius H. W. Metabolic formation of N- and O-glucuronides of 3-(p-chlorophenyl)thiazolo[3,2-a]benzimidazole-2-acetic acid. Rearrangement of the 1-o-acyl glucuronide. Drug Metab Dispos. 1982 Nov-Dec;10(6):599–604. [PubMed] [Google Scholar]
  16. Kuenzle C. C., Maier C., Rüttner J. R. The nature of four bilirubin fractions from serum and of three bilirubin fractions from bile. J Lab Clin Med. 1966 Feb;67(2):294–306. [PubMed] [Google Scholar]
  17. Lathe G. H. The degradation of haem by mammals and its excretion as conjugated bilirubin. Essays Biochem. 1972;8:107–148. [PubMed] [Google Scholar]
  18. Lauff J. J., Kasper M. E., Ambrose R. T. Quantitative liquid-chromatographic estimation of bilirubin species in pathological serum. Clin Chem. 1983 May;29(5):800–805. [PubMed] [Google Scholar]
  19. Lauff J. J., Kasper M. E., Ambrose R. T. Separation of bilirubin species in serum and bile by high-performance reversed-phase liquid chromatography. J Chromatogr. 1981 Dec 11;226(2):391–402. doi: 10.1016/s0378-4347(00)86073-9. [DOI] [PubMed] [Google Scholar]
  20. Lauff J. J., Kasper M. E., Wu T. W., Ambrose R. T. Isolation and preliminary characterization of a fraction of bilirubin in serum that is firmly bound to protein. Clin Chem. 1982 Apr;28(4 Pt 1):629–637. [PubMed] [Google Scholar]
  21. McDonagh A. F., Palma L. A. Heme catabolism in fish. Bile pigments in gallbladder bile of the electric torpedo, Torpedo californicus. Comp Biochem Physiol B. 1982;73(3):501–507. doi: 10.1016/0305-0491(82)90066-9. [DOI] [PubMed] [Google Scholar]
  22. Scharschmidt B. F., Blanckaert N., Farina F. A., Kabra P. M., Stafford B. E., Weisiger R. A. Measurement of serum bilirubin and its mono- and diconjugates: application to patients with hepatobiliary disease. Gut. 1982 Aug;23(8):643–649. doi: 10.1136/gut.23.8.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stogniew M., Fenselau C. Electrophilic reactions of acyl-linked glucuronides. Formation of clofibrate mercapturate in humans. Drug Metab Dispos. 1982 Nov-Dec;10(6):609–613. [PubMed] [Google Scholar]
  24. Weiss J. S., Gautam A., Lauff J. J., Sundberg M. W., Jatlow P., Boyer J. L., Seligson D. The clinical importance of a protein-bound fraction of serum bilirubin in patients with hyperbilirubinemia. N Engl J Med. 1983 Jul 21;309(3):147–150. doi: 10.1056/NEJM198307213090305. [DOI] [PubMed] [Google Scholar]
  25. Wu T. W., Zumbulyadis N., Gross S., Gohlke R. S. Human conjugated bilirubin--isolation, biosynthesis, and direct molecular characterization. Clin Chem. 1980 Aug;26(9):1323–1335. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES