Abstract
Two new vascular smooth muscle relaxants, bepridil and cetiedil, were found to possess specific CaM-inhibitory properties which resembled those of trifluoperazine. Trifluoperazine, bepridil, and cetiedil inhibited Ca2+-dependent 125I-CaM binding to erythrocyte membranes and CaM activation of membrane Ca2+-ATPase with IC50 values of approximately 12, approximately 17, and approximately 40 microM, respectively. This does not appear to be the result of a nonspecific hydrophobic interaction since inhibition was not observed with micromolar concentrations of many other hydrophobic agents. The predominant inhibition of binding and Ca2+-ATPase activation was competitive with respect to CaM. Bepridil and cetiedil bind directly to CaM since these drugs displaced [3H]trifluoperazine from sites on CaM. Inhibition of Ca2+-ATPase and binding by the drugs was not due to interference with the catalytic activity of this enzyme since: (a) neither inhibition of CaM-independent basal Ca2+-ATPase activity nor inhibition of proteolytically-activated Ca2+-ATPase activities were produced by these agents, and (b) no drug-induced inhibition of CaM binding was detected when membranes were preincubated with these agents but washed prior to addition of 125I-CaM. Thus, bepridil and cetiedil competitively inhibit Ca2+-dependent interactions of CaM with erythrocyte membranes, most likely by a direct interaction between these drugs and CaM. The principal clinical actions of these drugs may be explained by their interactions with CaM or CaM-related proteins leading to reduced activation of Ca2+-regulated enzymes in certain other tissues, such as myosin light chain kinase in vascular smooth muscle.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agre P., Gardner K., Bennett V. Association between human erythrocyte calmodulin and the cytoplasmic surface of human erythrocyte membranes. J Biol Chem. 1983 May 25;258(10):6258–6265. [PubMed] [Google Scholar]
- Andersson A., Drakenberg T., Thulin E., Forsén S. A 113Cd and 1H NMR study of the interaction of calmodulin with D600, trifluoperazine and some other hydrophobic drugs. Eur J Biochem. 1983 Aug 15;134(3):459–465. doi: 10.1111/j.1432-1033.1983.tb07589.x. [DOI] [PubMed] [Google Scholar]
- Asakura T., Ohnishi S. T., Adachi K., Ozguc M., Hashimoto K., Singer M., Russell M. O., Schwartz E. Effect of cetiedil on erythrocyte sickling: new type of antisickling agent that may affect erythrocyte membranes. Proc Natl Acad Sci U S A. 1980 May;77(5):2955–2959. doi: 10.1073/pnas.77.5.2955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beaughard M., Ferrier M., Labrid C., Lamar J. C., Leboeuf J., Piris P. Studies on the bradycardia induced by bepridil. Br J Pharmacol. 1982 Feb;75(2):293–300. doi: 10.1111/j.1476-5381.1982.tb08785.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benjamin L. J., Kokkini G., Peterson C. M. Cetiedil: its potential usefulness in sickle cell disease. Blood. 1980 Feb;55(2):265–270. [PubMed] [Google Scholar]
- Berkowitz L. R., Orringer E. P. Effect of cetiedil, an in vitro antisickling agent, on erythrocyte membrane cation permeability. J Clin Invest. 1981 Nov;68(5):1215–1220. doi: 10.1172/JCI110367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bostróm S. L., Ljung B., Mårdh S., Forsen S., Thulin E. Interaction of the antihypertensive drug felodipine with calmodulin. Nature. 1981 Aug 20;292(5825):777–778. doi: 10.1038/292777a0. [DOI] [PubMed] [Google Scholar]
- Braunwald E. Mechanism of action of calcium-channel-blocking agents. N Engl J Med. 1982 Dec 23;307(26):1618–1627. doi: 10.1056/NEJM198212233072605. [DOI] [PubMed] [Google Scholar]
- Caroni P., Carafoli E. The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem. 1981 Apr 10;256(7):3263–3270. [PubMed] [Google Scholar]
- Chafouleas J. G., Bolton W. E., Hidaka H., Boyd A. E., 3rd, Means A. R. Calmodulin and the cell cycle: involvement in regulation of cell-cycle progression. Cell. 1982 Jan;28(1):41–50. doi: 10.1016/0092-8674(82)90373-7. [DOI] [PubMed] [Google Scholar]
- Chafouleas J. G., Dedman J. R., Munjaal R. P., Means A. R. Calmodulin. Development and application of a sensitive radioimmunoassay. J Biol Chem. 1979 Oct 25;254(20):10262–10267. [PubMed] [Google Scholar]
- Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
- DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein P. M., Fiss K., Hachisu R., Andrenyak D. M. Interaction of calcium antagonists with cyclic AMP phosphodiesterases and calmodulin. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1142–1149. doi: 10.1016/0006-291x(82)91089-0. [DOI] [PubMed] [Google Scholar]
- Flammang D., Waynberger M., Jansen F. H., Paillet R., Coumel P. Electrophysiological profile of bepridil, a new anti-anginal drug with calcium blocking properties. Eur Heart J. 1983 Sep;4(9):657–654. [PubMed] [Google Scholar]
- Graf E., Filoteo A. G., Penniston J. T. Preparation of 125I-calmodulin with retention of full biological activity: its binding to human erythrocyte ghosts. Arch Biochem Biophys. 1980 Sep;203(2):719–726. doi: 10.1016/0003-9861(80)90231-3. [DOI] [PubMed] [Google Scholar]
- Harder D. R., Sperelakis N. Bepridil blockade of Ca2+-dependent action potentials in vascular smooth muscle of dog coronary artery. J Cardiovasc Pharmacol. 1981 Jul-Aug;3(4):906–914. doi: 10.1097/00005344-198107000-00024. [DOI] [PubMed] [Google Scholar]
- Hidaka H., Tanaka T. Naphthalenesulfonamides as calmodulin antagonists. Methods Enzymol. 1983;102:185–194. doi: 10.1016/s0076-6879(83)02019-4. [DOI] [PubMed] [Google Scholar]
- Hidaka H., Yamaki T., Naka M., Tanaka T., Hayashi H., Kobayashi R. Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol Pharmacol. 1980 Jan;17(1):66–72. [PubMed] [Google Scholar]
- Kawada M., Satoh K., Taira N. Profile of coronary vasodilator and cardiac actions of bepridil revealed by use of isolated, blood-perfused heart preparations of the dog. J Cardiovasc Pharmacol. 1983 Jul-Aug;5(4):604–612. doi: 10.1097/00005344-198307000-00015. [DOI] [PubMed] [Google Scholar]
- Klee C. B., Crouch T. H., Richman P. G. Calmodulin. Annu Rev Biochem. 1980;49:489–515. doi: 10.1146/annurev.bi.49.070180.002421. [DOI] [PubMed] [Google Scholar]
- Klee C. B., Vanaman T. C. Calmodulin. Adv Protein Chem. 1982;35:213–321. doi: 10.1016/s0065-3233(08)60470-2. [DOI] [PubMed] [Google Scholar]
- Levin R. M., Weiss B. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol Pharmacol. 1977 Jul;13(4):690–697. [PubMed] [Google Scholar]
- Levin R. M., Weiss B. Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. J Pharmacol Exp Ther. 1979 Mar;208(3):454–459. [PubMed] [Google Scholar]
- Levine S. N., Berkowitz L. R., Orringer E. P. Cetiedil inhibition of calmodulin-stimulated enzyme activity. Biochem Pharmacol. 1984 Feb 15;33(4):581–584. doi: 10.1016/0006-2952(84)90311-3. [DOI] [PubMed] [Google Scholar]
- Marshall R. J., Muir A. W. The beneficial actions of bepridil in acute myocardial infarction in anaesthetized dogs. Br J Pharmacol. 1981 Jun;73(2):471–479. doi: 10.1111/j.1476-5381.1981.tb10445.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazzei G. J., Schatzman R. C., Turner R. S., Vogler W. R., Kuo J. F. Phospholipid-sensitive Ca2+-dependent protein kinase inhibition by R-24571, a calmodulin antagonist. Biochem Pharmacol. 1984 Jan 1;33(1):125–130. doi: 10.1016/0006-2952(84)90379-4. [DOI] [PubMed] [Google Scholar]
- Means A. R., Dedman J. R. Calmodulin--an intracellular calcium receptor. Nature. 1980 May 8;285(5760):73–77. doi: 10.1038/285073a0. [DOI] [PubMed] [Google Scholar]
- Moore P. B., Dedman J. R. Calcium-dependent protein binding to phenothiazine columns. J Biol Chem. 1982 Aug 25;257(16):9663–9667. [PubMed] [Google Scholar]
- Murakami T., Hatanaka M., Murachi T. The cytosol of human erythrocytes contains a highly Ca2+-sensitive thiol protease (calpain I) and its specific inhibitor protein (calpastatin). J Biochem. 1981 Dec;90(6):1809–1816. doi: 10.1093/oxfordjournals.jbchem.a133659. [DOI] [PubMed] [Google Scholar]
- Niggli V., Adunyah E. S., Carafoli E. Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+ - ATPase. J Biol Chem. 1981 Aug 25;256(16):8588–8592. [PubMed] [Google Scholar]
- Niggli V., Adunyah E. S., Penniston J. T., Carafoli E. Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem. 1981 Jan 10;256(1):395–401. [PubMed] [Google Scholar]
- Nishikawa M., Hidaka H. Role of calmodulin in platelet aggregation. Structure-activity relationship of calmodulin antagonists. J Clin Invest. 1982 Jun;69(6):1348–1355. doi: 10.1172/JCI110574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norman J. A., Drummond A. H., Moser P. Inhibition of calcium-dependent regulator-stimulated phosphodiesterase activity by neuroleptic drugs is unrelated to their clinical efficacy. Mol Pharmacol. 1979 Nov;16(3):1089–1094. [PubMed] [Google Scholar]
- Prozialeck W. C., Weiss B. Inhibition of calmodulin by phenothiazines and related drugs: structure-activity relationships. J Pharmacol Exp Ther. 1982 Sep;222(3):509–516. [PubMed] [Google Scholar]
- Raess B. U., Vincenzi F. F. Calmodulin activation of red blood cell (Ca2+ + Mg2+)-ATPase and its antagonism by phenothiazines. Mol Pharmacol. 1980 Sep;18(2):253–258. [PubMed] [Google Scholar]
- Ravdin J. I., Sperelakis N., Guerrant R. L. Effect of ion channel inhibitors on the cytopathogenicity of Entamoeba histolytica. J Infect Dis. 1982 Sep;146(3):335–340. doi: 10.1093/infdis/146.3.335. [DOI] [PubMed] [Google Scholar]
- Roufogalis B. D. Phenothiazine antagonism of calmodulin: a structurally-nonspecific interaction. Biochem Biophys Res Commun. 1981 Feb 12;98(3):607–613. doi: 10.1016/0006-291x(81)91157-8. [DOI] [PubMed] [Google Scholar]
- Schmidt W. F., 3rd, Asakura T., Schwartz E. Effect of cetiedil on cation and water movements in erythrocytes. J Clin Invest. 1982 Mar;69(3):589–594. doi: 10.1172/JCI110485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siefring G. E., Jr, Apostol A. B., Velasco P. T., Lorand L. Enzymatic basis for the Ca2+-induced cross-linking of membrane proteins in intact human erythrocytes. Biochemistry. 1978 Jun 27;17(13):2598–2604. doi: 10.1021/bi00606a022. [DOI] [PubMed] [Google Scholar]
- Simaan J. A., Aviado D. M. A comparative study between the cardiovascular effects of cetiedil, a new vasodilator, and papaverine and aminophylline. J Pharmacol Exp Ther. 1976 Jul;198(1):176–186. [PubMed] [Google Scholar]
- Stewart A. A., Ingebritsen T. S., Cohen P. The protein phosphatases involved in cellular regulation. 5. Purification and properties of a Ca2+/calmodulin-dependent protein phosphatase (2B) from rabbit skeletal muscle. Eur J Biochem. 1983 May 2;132(2):289–295. doi: 10.1111/j.1432-1033.1983.tb07361.x. [DOI] [PubMed] [Google Scholar]
- Tanaka T., Ohmura T., Hidaka H. Hydrophobic interaction of the Ca2+-calmodulin complex with calmodulin antagonists. Naphthalenesulfonamide derivatives. Mol Pharmacol. 1982 Sep;22(2):403–407. [PubMed] [Google Scholar]
- Uzunov P., Weiss B. Effects of phenothiazine tranquilizers on the cyclic 3',5'-adenosine monophosphate system of rat brain. Neuropharmacology. 1971 Nov;10(6):697–708. doi: 10.1016/0028-3908(71)90084-0. [DOI] [PubMed] [Google Scholar]
- Weiss B., Prozialeck W. C., Wallace T. L. Interaction of drugs with calmodulin. Biochemical, pharmacological and clinical implications. Biochem Pharmacol. 1982 Jul 1;31(13):2217–2226. doi: 10.1016/0006-2952(82)90104-6. [DOI] [PubMed] [Google Scholar]
- Weiss B. Techniques for measuring the interaction of drugs with calmodulin. Methods Enzymol. 1983;102:171–184. doi: 10.1016/s0076-6879(83)02018-2. [DOI] [PubMed] [Google Scholar]
- Winslow E., Kane K. A. Supraventricular antidysrhythmic and electrophysiological effects of bepridil, a new antianginal agent. J Cardiovasc Pharmacol. 1981 Jul-Aug;3(4):655–667. doi: 10.1097/00005344-198107000-00001. [DOI] [PubMed] [Google Scholar]
- Wise B. C., Glass D. B., Chou C. H., Raynor R. L., Katoh N., Schatzman R. C., Turner R. S., Kibler R. F., Kuo J. F. Phospholipid-sensitive Ca2+-dependent protein kinase from heart. II. Substrate specificity and inhibition by various agents. J Biol Chem. 1982 Jul 25;257(14):8489–8495. [PubMed] [Google Scholar]
- Wolach J. B., Coates T. D., Tzeng D. Y., Baehner R. L., Boxer L. A. Modulation of polymorphonuclear leukocyte function by cetiedil. Blood. 1983 Aug;62(2):274–279. [PubMed] [Google Scholar]
