Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Sep;74(3):828–833. doi: 10.1172/JCI111499

Aggregating platelets contract isolated canine pulmonary arteries by releasing 5-hydroxytryptamine.

M D McGoon, P M Vanhoutte
PMCID: PMC425237  PMID: 6470141

Abstract

To examine the effect of platelets and 5-hydroxytryptamine on pulmonary arterial smooth muscle, rings of canine pulmonary arteries, with and without endothelium, were studied under isometric conditions in physiological salt solution. 5-Hydroxytryptamine, but not the thromboxane-like endoperoxide analogue U-46619, produced concentration-dependent contractions of the rings with a maximum averaging 93% of that obtained with KC1. Autologous platelets in concentrations comparable to that in plasma caused contractions averaging 70% of the maximal responses to KC1. Solution withdrawn from baths containing platelet-contracted rings, but not the supernatant from nonaggregated platelets, also caused contraction. The serotonergic antagonists cyproheptadine, ketanserin, and methysergide caused concentration-dependent inhibition and eventually abolition of contractions evoked by platelets and 5-hydroxytryptamine. Phentolamine and prazosin produced significantly less inhibition of the contractile response to platelets. Pretreatment of the platelets with indomethacin or meclofenamate reduced thromboxane release but had no effect on platelet-induced contractions. Removal of the endothelium did not affect contractile responses to platelets or 5-hydroxy-tryptamine. These experiments demonstrate that in the canine pulmonary artery: (a) 5-hydroxytryptamine is the predominant mediator of the contractile response triggered by platelet aggregation; and (b) unlike in other blood vessels, the endothelium cannot curtail the contractile response to aggregating platelets.

Full text

PDF
828

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altura B. M., Chand N. Differential effects of prostaglandins on canine intrapulmonary arteries and veins. Br J Pharmacol. 1981 Aug;73(4):819–827. doi: 10.1111/j.1476-5381.1981.tb08734.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BORST H. G., BERGLUND E., MCGREGOR M. The effects of pharmacologic agents on the pulmonary circulation in the dog; studies on epinephrine, nor-epinephrine, 5-hydroxytryptamine, acetylcholine, histamine and aminophylline. J Clin Invest. 1957 May;36(5):669–675. doi: 10.1172/JCI103467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhattacharya J., Nanjo S., Staub N. C. Micropuncture measurement of lung microvascular pressure during 5-HT infusion. J Appl Physiol Respir Environ Exerc Physiol. 1982 Mar;52(3):634–637. doi: 10.1152/jappl.1982.52.3.634. [DOI] [PubMed] [Google Scholar]
  4. Boyd J. A., Eling T. E. Prostaglandin release and the interaction of platelets with the pulmonary vasculature of rat and guinea pig. Thromb Res. 1980 Jul 1;19(1-2):239–248. doi: 10.1016/0049-3848(80)90422-3. [DOI] [PubMed] [Google Scholar]
  5. COMROE J. H., Jr, VAN LINGEN B., STROUD R. C., RONCORONI A. Reflex and direct cardiopulmonary effects of 5-OH-tryptamine (serotonin); their possible role in pulmonary embolism and coronary thrombosis. Am J Physiol. 1953 Jun;173(3):379–386. doi: 10.1152/ajplegacy.1953.173.3.379. [DOI] [PubMed] [Google Scholar]
  6. Chand N., Altura B. M. Serotonin receptors subserve only contraction in canine and rat pulmonary arteries and veins. Artery. 1980;7(3):232–245. [PubMed] [Google Scholar]
  7. Cohen R. A., Shepherd J. T., Vanhoutte P. M. Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science. 1983 Jul 15;221(4607):273–274. doi: 10.1126/science.6574604. [DOI] [PubMed] [Google Scholar]
  8. Coleman R. A., Humphrey P. P., Kennedy I., Levy G. P., Lumley P. Comparison of the actions of U-46619, a prostaglandin H2-analogue, with those of prostaglandin H2 and thromboxane A2 on some isolated smooth muscle preparations. Br J Pharmacol. 1981 Jul;73(3):773–778. doi: 10.1111/j.1476-5381.1981.tb16814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Clerck F., Van Nueten J. M. Platelet-mediated vascular contractions: inhibition of the serotonergic component by ketanserin. Thromb Res. 1982 Sep 15;27(6):713–727. doi: 10.1016/0049-3848(82)90009-3. [DOI] [PubMed] [Google Scholar]
  10. De Mey J. G., Claeys M., Vanhoutte P. M. Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery. J Pharmacol Exp Ther. 1982 Jul;222(1):166–173. [PubMed] [Google Scholar]
  11. De Mey J. G., Vanhoutte P. M. Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res. 1982 Oct;51(4):439–447. doi: 10.1161/01.res.51.4.439. [DOI] [PubMed] [Google Scholar]
  12. Dewanjee M. K., Rao S. A., Didisheim P. Indium-111 tropolone, a new high-affinity platelet label: preparation and evaluation of labeling parameters. J Nucl Med. 1981 Nov;22(11):981–987. [PubMed] [Google Scholar]
  13. Freeman W. K., Rorie D. K., Tyce G. M. Effects of 5-hydroxytryptamine on neuroeffector junction in human pulmonary artery. J Appl Physiol Respir Environ Exerc Physiol. 1981 Sep;51(3):693–698. doi: 10.1152/jappl.1981.51.3.693. [DOI] [PubMed] [Google Scholar]
  14. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  15. GILBERT R. P., HINSHAW L. B., KUIDA H., VISSCHER M. B. Effects of histamine, 5 hydroxytryptamine and epinephrine on pulmonary hemodynamics with particular reference to arterial and venous segment resistances. Am J Physiol. 1958 Jul;194(1):165–170. doi: 10.1152/ajplegacy.1958.194.1.165. [DOI] [PubMed] [Google Scholar]
  16. Gruetter C. A., Ignarro L. J., Hyman A. L., Kadowitz P. J. Contractile effects of 5-hydroxytryptamine in isolated intrapulmonary arteries and veins. Can J Physiol Pharmacol. 1981 Feb;59(2):157–162. doi: 10.1139/y81-026. [DOI] [PubMed] [Google Scholar]
  17. HYLAND J. W., PIEMME T. E., ALEXANDER S., HAYNES F. W., SMITH G. T., DEXTER L. BEHAVIOR OF PULMONARY HYPERTENSION PRODUCED BY SEROTONIN AND EMBOLI. Am J Physiol. 1963 Sep;205:591–597. doi: 10.1152/ajplegacy.1963.205.3.591. [DOI] [PubMed] [Google Scholar]
  18. Huval W. V., Mathieson M. A., Stemp L. I., Dunham B. M., Jones A. G., Shepro D., Hechtman H. B. Therapeutic benefits of 5-hydroxytryptamine inhibition following pulmonary embolism. Ann Surg. 1983 Feb;197(2):220–225. doi: 10.1097/00000658-198302000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Joiner P. D., Kadowitz P. J., Davis L. B., Hyman A. L. Contractile responses of canine isolated pulmonary lobar arteries and veins to norepinephrine, serotonin, and tyramine. Can J Physiol Pharmacol. 1975 Oct;53(5):830–838. doi: 10.1139/y75-114. [DOI] [PubMed] [Google Scholar]
  20. Kadowitz P. J., Gruetter C. A., Spannhake E. W., Hyman A. L. Pulmonary vascular responses to prostaglandins. Fed Proc. 1981 May 15;40(7):1991–1996. [PubMed] [Google Scholar]
  21. Levy S. E., Simmons D. H., Assali N. S. Serotonin, pulmonary hypertension, and airway constriction in the anesthetized dog. Proc Soc Exp Biol Med. 1971 Oct;138(1):365–368. doi: 10.3181/00379727-138-35898. [DOI] [PubMed] [Google Scholar]
  22. Mlczoch J., Tucker A., Weir E. K., Reeves J. T., Grover R. F. Platelet-mediated pulmonary hypertension and hypoxia during pulmonary microembolism: reduction by platelet inhibition. Chest. 1978 Dec;74(6):648–653. doi: 10.1378/chest.74.6.648. [DOI] [PubMed] [Google Scholar]
  23. Ozdemir I. A., Webb W. R., Wax S. D. Effect of neural and humoral factors on pulmonary hemodynamics and microcirculation in pulmonary embolism. J Thorac Cardiovasc Surg. 1974 Dec;68(6):896–904. [PubMed] [Google Scholar]
  24. Rickaby D. A., Dawson C. A., Maron M. B. Pulmonary inactivation of serotonin and site of serotonin pulmonary vasoconstriction. J Appl Physiol Respir Environ Exerc Physiol. 1980 Apr;48(4):606–612. doi: 10.1152/jappl.1980.48.4.606. [DOI] [PubMed] [Google Scholar]
  25. Rosoff C. B., Salzman E. W., Gurewich V. Reduction of platelet serotonin and the response to pulmonary emboli. Surgery. 1971 Jul;70(1):12–19. [PubMed] [Google Scholar]
  26. SHEPHERD J. T., DONALD D. E., LINDER E., SWAN H. J. Effect of small doses of 5-hydroxytryptamine (serotonin) on pulmonary circulation in the closed-chest dog. Am J Physiol. 1959 Nov;197:963–967. doi: 10.1152/ajplegacy.1959.197.5.963. [DOI] [PubMed] [Google Scholar]
  27. Sackner M. A., Will D. H., DuBois A. B. The site of pulmonary vasomotor activity during hypoxia or serotonin administration. J Clin Invest. 1966 Jan;45(1):112–121. doi: 10.1172/JCI105315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strand J. C., Edwards B. S., Anderson M. E., Romero J. C., Knox F. G. Effect of imidazole on renal function in unilateral ureteral-obstructed rat kidneys. Am J Physiol. 1981 Jun;240(6):F508–F514. doi: 10.1152/ajprenal.1981.240.6.F508. [DOI] [PubMed] [Google Scholar]
  29. Tyce G. M., Yaksh T. L. Monoamine release from cat spinal cord by somatic stimuli: an intrinsic modulatory system. J Physiol. 1981 May;314:513–529. doi: 10.1113/jphysiol.1981.sp013722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Utsunomiya T., Krausz M. M., Shepro D., Hechtman H. B. Prostaglandin control of plasma and platelet 5-hydroxytryptamine in normal and embolized animals. Am J Physiol. 1981 Nov;241(5):H766–H771. doi: 10.1152/ajpheart.1981.241.5.H766. [DOI] [PubMed] [Google Scholar]
  31. VAN ROSSUM J. M. Cumulative dose-response curves. II. Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch Int Pharmacodyn Ther. 1963;143:299–330. [PubMed] [Google Scholar]
  32. Vaage J. Intravascular platelet aggregation and pulmonary injury. Ann N Y Acad Sci. 1982;384:301–318. doi: 10.1111/j.1749-6632.1982.tb21380.x. [DOI] [PubMed] [Google Scholar]
  33. Van Nueten J. M., Janssen P. A., De Ridder A., Vanhoutte P. M. Interaction between 5-hydroxytryptamine and other vasoconstrictor substances in the isolated femoral artery of the rabbit; effect of ketanserin (R 41 468). Eur J Pharmacol. 1982 Feb 5;77(4):281–287. doi: 10.1016/0014-2999(82)90130-3. [DOI] [PubMed] [Google Scholar]
  34. Van Nueten J. M., Janssen P. A., Van Beek J., Xhonneux R., Verbeuren T. J., Vanhoutte P. M. Vascular effects of ketanserin (R 41 468), a novel antagonist of 5-HT2 serotonergic receptors. J Pharmacol Exp Ther. 1981 Jul;218(1):217–230. [PubMed] [Google Scholar]
  35. Woolverton W. C., Hyman A. L. The pulmonary hemodynamic effects of lung thromboemboli in dogs. Surgery. 1973 Apr;73(4):572–578. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES