Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Sep;74(3):898–905. doi: 10.1172/JCI111507

Thyroid hormone stimulation of phosphatidylcholine synthesis in cultured fetal rabbit lung.

P L Ballard, M L Hovey, L K Gonzales
PMCID: PMC425245  PMID: 6470145

Abstract

To investigate the mechanism of thyroid hormone action on pulmonary surfactant synthesis, we characterized the effect of triiodothyronine on phosphatidylcholine synthesis in cultured fetal rabbit lung. Since glucocorticoids stimulate surfactant synthesis and reduce the incidence of Respiratory Distress Syndrome in premature infants, we also examined the interaction of triiodothyronine and dexamethasone. The rate of choline incorporation into phosphatidylcholine was determined in organ cultures of rabbit lung maintained in serum-free Waymouth's medium. In 23-d lung cultured for 72 h, the increase in choline incorporation with triiodothyronine alone, dexamethasone alone, and triiodothyronine plus dexamethasone was 50, 62, and 161%, respectively. Both triiodothyronine and dexamethasone also increased incorporation rates with glucose, glycerol, and acetate as precursors, and stimulation with triiodothyronine plus dexamethasone was at least additive. Dexamethasone, but not triiodothyronine, affected distribution of radioactivity from [3H] acetate among phospholipids. Stimulation was first detected 8-12 h after addition of triiodothyronine, and then increased in a linear fashion. With triiodothyronine plus dexamethasone, stimulation was maximal at 48-72 h, and was supra-additive at all times. Exposure of cultured lung to dexamethasone enhanced the subsequent response to triiodothyronine, but not vice versa. When triiodothyronine was removed from cultures, there was no further stimulation and the triiodothyronine effect was partially reversed within 24 h. Half-maximal stimulation of choline incorporation occurred at a triiodothyronine concentration (0.10 nM) very similar to the dissociation constant for triiodothyronine binding to nuclear receptor (0.11 nM). The relative potencies of thyroid hormone analogs for nuclear binding and stimulation of phosphatidylcholine synthesis were also similar: triiodothyroacetic acid greater than triiodothyronine-proprionic acid greater than L-triiodothyronine approximately D-triiodothyronine much greater than thyroxine much greater than 3,5-diethyl-3'-isopropyl-DL-thyronine approximately 3,5-dimethyl-3'-isopropyl-L-thyronine approximately reverse triiodothyronine. The effect of triiodothyronine was blocked by the presence of either actinomycin D or cycloheximide, inhibitors of ribonucleic acid and protein synthesis, respectively. We conclude that triiodothyronine stimulates phosphatidylcholine synthesis by a process involving nuclear receptors and de novo ribonucleic acid and protein synthesis. These findings support the concept that endogenous triiodothyronine has a physiologic role in lung maturation and suggest that a combined antenatal therapy with thyroid hormone and glucocorticoid may be useful for prevention of Respiratory Distress Syndrome in the premature infant.

Full text

PDF
898

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Ballard P. L., Ballard R. A., Granberg J. P., Sniderman S., Gluckman P. D., Kaplan S. L., Grumbach M. M. Fetal sex and prenatal betamethasone therapy. J Pediatr. 1980 Sep;97(3):451–454. doi: 10.1016/s0022-3476(80)80204-6. [DOI] [PubMed] [Google Scholar]
  3. Ballard P. L., Benson B. J., Brehier A., Carter J. P., Kriz B. M., Jorgensen E. C. Transplacental stimulation of lung development in the fetal rabbit by 3,5-dimethyl-3'-isopropyl-L-thyronine. J Clin Invest. 1980 Jun;65(6):1407–1417. doi: 10.1172/JCI109805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Batenburg J. J., Longmore W. J., van Golde L. M. The synthesis of phosphatidylcholine by adult rat lung alveolar type II epithelial cells in primary culture. Biochim Biophys Acta. 1978 Apr 28;529(1):160–170. doi: 10.1016/0005-2760(78)90114-5. [DOI] [PubMed] [Google Scholar]
  5. Cheng J. B., Goldfien A., Ballard P. L., Roberts J. M. Glucocorticoids increase pulmonary beta-adrenergic receptors in fetal rabbit. Endocrinology. 1980 Nov;107(5):1646–1648. doi: 10.1210/endo-107-5-1646. [DOI] [PubMed] [Google Scholar]
  6. Erenberg A., Rhodes M. L., Weinstein M. M., Kennedy R. L. The effect of fetal thyroidectomy on ovine fetal lung maturation. Pediatr Res. 1979 Apr;13(4 Pt 1):230–235. doi: 10.1203/00006450-197904000-00004. [DOI] [PubMed] [Google Scholar]
  7. Evans R. M., Birnberg N. C., Rosenfeld M. G. Glucocorticoid and thyroid hormones transcriptionally regulate growth hormone gene expression. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7659–7663. doi: 10.1073/pnas.79.24.7659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giannopoulos G., Smith S. K. Hormonal regulation of beta-adrenergic receptors in fetal rabbit lung in organ culture. Life Sci. 1982 Aug 23;31(8):795–802. doi: 10.1016/0024-3205(82)90707-x. [DOI] [PubMed] [Google Scholar]
  9. Gonzales L. W., Ballard P. L. Identification and characterization of nuclear 3,5,3'-triiodothyronine-binding sites in fetal human lung. J Clin Endocrinol Metab. 1981 Jul;53(1):21–28. doi: 10.1210/jcem-53-1-21. [DOI] [PubMed] [Google Scholar]
  10. Gonzales L. W., Ballard P. L. Nuclear 3,5,3'-triiodothyronine receptors in rabbit lung: characterization and developmental changes. Endocrinology. 1982 Aug;111(2):542–552. doi: 10.1210/endo-111-2-542. [DOI] [PubMed] [Google Scholar]
  11. Gross I., Ballard P. L., Ballard R. A., Jones C. T., Wilson C. M. Corticosteroid stimulation of phosphatidylcholine synthesis in cultured fetal rabbit lung: evidence for de novo protein synthesis mediated by glucocorticoid receptors. Endocrinology. 1983 Mar;112(3):829–837. doi: 10.1210/endo-112-3-829. [DOI] [PubMed] [Google Scholar]
  12. Gross I., Dynia D. W., Wilson C. M., Ingleson L. D., Gewolb I. H., Rooney S. A. Glucocorticoid-thyroid hormone interactions in fetal rat lung. Pediatr Res. 1984 Feb;18(2):191–196. doi: 10.1203/00006450-198402000-00017. [DOI] [PubMed] [Google Scholar]
  13. Gross I., Wilson C. M. Fetal lung in organ culture. IV. Supra-additive hormone interactions. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jun;52(6):1420–1425. doi: 10.1152/jappl.1982.52.6.1420. [DOI] [PubMed] [Google Scholar]
  14. Gross I., Wilson C. M., Ingleson L. D., Brehier A., Rooney S. A. Fetal lung in organ culture. III. Comparison of dexamethasone, thyroxine, and methylxanthines. J Appl Physiol Respir Environ Exerc Physiol. 1980 May;48(5):872–877. doi: 10.1152/jappl.1980.48.5.872. [DOI] [PubMed] [Google Scholar]
  15. Gross I., Wilson C. M., Ingleson L. D., Brehier A., Rooney S. A. The influence of hormones on the biochemical development of fetal rat lung in organ culture. I. Estrogen. Biochim Biophys Acta. 1979 Dec 18;575(3):375–383. doi: 10.1016/0005-2760(79)90106-1. [DOI] [PubMed] [Google Scholar]
  16. Hitchcock K. R. Hormones and the lung. I. Thyroid hormones and glucocorticoids in lung development. Anat Rec. 1979 May;194(1):15–39. doi: 10.1002/ar.1091940103. [DOI] [PubMed] [Google Scholar]
  17. Ismail-Beigi F., Bissell D. M., Edelman I. S. Thyroid thermogenesis in adult rat hepatocytes in primary monolayer culture: direct action of thyroid hormone in vitro. J Gen Physiol. 1979 Mar;73(3):369–383. doi: 10.1085/jgp.73.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kriz B. M., Gates J. A., Read F. E., Fong B. B. Synergistic regulation of fetal rat liver nicotinamide adenine dinucleotide phosphate (reduced form) cytochrome c reductase activity: effects of L-triiodothyronine and hydrocortisone. Endocrinology. 1982 Jun;110(6):2145–2150. doi: 10.1210/endo-110-6-2145. [DOI] [PubMed] [Google Scholar]
  19. Lindenberg J. A., Brehier A., Ballard P. L. Triiodothyronine nuclear binding in fetal and adult rabbit lung and cultured lung cells. Endocrinology. 1978 Nov;103(5):1725–1731. doi: 10.1210/endo-103-5-1725. [DOI] [PubMed] [Google Scholar]
  20. Longmuir K. J., Bleasdale J. E., Quirk J. G., Johnston J. M. Regulation of lamellar body acidic glycerophospholipid biosynthesis in fetal rabbit lung in organ culture. Biochim Biophys Acta. 1982 Aug 18;712(2):356–364. doi: 10.1016/0005-2760(82)90353-8. [DOI] [PubMed] [Google Scholar]
  21. Mariash C. N., Oppenheimer J. H. Interrelationship of triiodothyronine concentration, metabolism, protein binding, and nuclear occupancy in the induction of malic enzyme by cultured adult rat hepatocytes. Endocrinology. 1983 Jan;112(1):80–85. doi: 10.1210/endo-112-1-80. [DOI] [PubMed] [Google Scholar]
  22. Mashiach S., Barkai G., Sack J., Stern E., Brish M., Goldman B., Serr D. M. The effect of intraamniotic thyroxine administration on fetal lung maturity in man. J Perinat Med. 1979;7(3):161–170. doi: 10.1515/jpme.1979.7.3.161. [DOI] [PubMed] [Google Scholar]
  23. Mendelson C. R., Johnston J. M., MacDonald P. C., Snyder J. M. Multihormonal regulation of surfactant synthesis by human fetal lung in vitro. J Clin Endocrinol Metab. 1981 Aug;53(2):307–317. doi: 10.1210/jcem-53-2-307. [DOI] [PubMed] [Google Scholar]
  24. Motwani N. M., Unakar N. J., Roy A. K. Multiple hormone requirement for the synthesis of alpha 2u-globulin by monolayers of rat hepatocytes in long term primary culture. Endocrinology. 1980 Nov;107(5):1606–1613. doi: 10.1210/endo-107-5-1606. [DOI] [PubMed] [Google Scholar]
  25. Papageorgiou A. N., Colle E., Farri-Kostopoulos E., Gelfand M. M. Incidence of respiratory distress syndrome following antenatal betamethasone: role of sex, type of delivery, and prolonged rupture of membranes. Pediatrics. 1981 May;67(5):614–617. [PubMed] [Google Scholar]
  26. Rooney S. A., Gobran L. I., Marino P. A., Maniscalco W. M., Gross I. Effects of betamethasone on phospholipid content, composition and biosynthesis in the fetal rabbit lung. Biochim Biophys Acta. 1979 Jan 29;572(1):64–76. doi: 10.1016/0005-2760(79)90200-5. [DOI] [PubMed] [Google Scholar]
  27. Samuels H. H., Stanley F., Shapiro L. E. Dose-dependent depletion of nuclear receptors by L-triiodothyronine: evidence for a role in induction of growth hormone synthesis in cultured GH1 cells. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3877–3881. doi: 10.1073/pnas.73.11.3877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Setaro F., Morley C. G. A modified fluorometric method for the determination of microgram quantities of DNA from cell or tissue cultures. Anal Biochem. 1976 Mar;71(1):313–317. doi: 10.1016/0003-2697(76)90043-9. [DOI] [PubMed] [Google Scholar]
  29. Smith B. T., Sabry K. Glucocorticoid-thyroid synergism in lung maturation: a mechanism involving epithelial-mesenchymal interaction. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1951–1954. doi: 10.1073/pnas.80.7.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Smith B. T., Torday J. S. Factors affecting lecithin synthesis by fetal lung cells in culture. Pediatr Res. 1974 Oct;8(10):848–851. doi: 10.1203/00006450-197410000-00006. [DOI] [PubMed] [Google Scholar]
  31. Spence J. T., Pitot H. C. Hormonal regulation of glucokinase in primary cultures of adult rat hepatocytes. J Biol Chem. 1979 Dec 25;254(24):12331–12336. [PubMed] [Google Scholar]
  32. Wu B., Kikkawa Y., Orzalesi M. M., Motoyama E. K., Kaibara M., Zigas C. J., Cook C. D. The effect of thyroxine on the maturation of fetal rabbit lungs. Biol Neonate. 1973;22(3):161–168. doi: 10.1159/000240550. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES