Abstract
Histochemical and biochemical characteristics of the ventilatory muscles were evaluated in control and elastase-induced emphysematous hamsters. The emphysematous group was divided into sedentary and endurance-trained groups. Endurance training consisted of treadmill running, 1 h a day, 7 d a week. The experimental period lasted 24 wk. Histochemically, the diaphragm from the sedentary emphysematous hamsters revealed a selective fast fiber atrophy which was prevented by endurance training. Training also led to a hypertrophy of the slow, high oxidative fibers. The external intercostals from both emphysematous groups revealed an increased proportion of fast oxidative fibers at the expense of a decreased number of fast glycolytic fibers. However, the fast fibers in both emphysematous groups were significantly atrophied as compared with controls. The internal intercostals revealed no adaptive changes in either size or proportion distribution of the various fiber types. Biochemically, the diaphragm of the emphysematous animals had a significantly improved oxidative potential as measured by citrate synthase, and a reduced glycolytic capacity as indicated by phosphofructokinase activity, compared with controls. The magnitudes of the biochemical changes were similar in both emphysematous groups and were consistent for diaphragmatic samples taken from the costal and crural segments. The combined internal and external intercostals also underwent significant biochemical increases in their oxidative capacity. In addition, training of the emphysematous group led to an increased glycolytic potential of the intercostals.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldwin K. M., Cheadle W. G., Martinez O. M., Cooke D. A. Effect of functional overload on enzyme levels in different types of skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol. 1977 Feb;42(2):312–317. doi: 10.1152/jappl.1977.42.2.312. [DOI] [PubMed] [Google Scholar]
- Baldwin K. M., Winder W. W. Adaptive responses in different types of muscle fibers to endurance exercise. Ann N Y Acad Sci. 1977;301:411–423. doi: 10.1111/j.1749-6632.1977.tb38217.x. [DOI] [PubMed] [Google Scholar]
- Baldwin K. M., Winder W. W., Terjung R. L., Holloszy J. O. Glycolytic enzymes in different types of skeletal muscle: adaptation to exercise. Am J Physiol. 1973 Oct;225(4):962–966. doi: 10.1152/ajplegacy.1973.225.4.962. [DOI] [PubMed] [Google Scholar]
- Barnard R. J., Edgerton V. R., Peter J. B. Effect of exercise on skeletal muscle. I. Biochemical and histochemical properties. J Appl Physiol. 1970 Jun;28(6):762–766. doi: 10.1152/jappl.1970.28.6.762. [DOI] [PubMed] [Google Scholar]
- Bradley M. E., Leith D. E. Ventilatory muscle training and the oxygen cost of sustained hyperpnea. J Appl Physiol Respir Environ Exerc Physiol. 1978 Dec;45(6):885–892. doi: 10.1152/jappl.1978.45.6.885. [DOI] [PubMed] [Google Scholar]
- Campbell J. A., Hughes R. L., Sahgal V., Frederiksen J., Shields T. W. Alterations in intercostal muscle morphology and biochemistry in patients with obstructive lung disease. Am Rev Respir Dis. 1980 Nov;122(5):679–686. doi: 10.1164/arrd.1980.122.5.679. [DOI] [PubMed] [Google Scholar]
- Dudley G. A., Abraham W. M., Terjung R. L. Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol. 1982 Oct;53(4):844–850. doi: 10.1152/jappl.1982.53.4.844. [DOI] [PubMed] [Google Scholar]
- Farkas G. A., Roussos C. Adaptability of the hamster diaphragm to exercise and/or emphysema. J Appl Physiol Respir Environ Exerc Physiol. 1982 Nov;53(5):1263–1272. doi: 10.1152/jappl.1982.53.5.1263. [DOI] [PubMed] [Google Scholar]
- Farkas G. A., Roussos C. Diaphragm in emphysematous hamsters: sarcomere adaptability. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jun;54(6):1635–1640. doi: 10.1152/jappl.1983.54.6.1635. [DOI] [PubMed] [Google Scholar]
- Faulkner J. A., Maxwell L. C., Brook D. A., Lieberman D. A. Adaptation of guinea pig plantaris muscle fibers to endurance training. Am J Physiol. 1971 Jul;221(1):291–297. doi: 10.1152/ajplegacy.1971.221.1.291. [DOI] [PubMed] [Google Scholar]
- Goldspink G., Ward P. S. Changes in rodent muscle fibre types during post-natal growth, undernutrition and exercise. J Physiol. 1979 Nov;296:453–469. doi: 10.1113/jphysiol.1979.sp013016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guth L., Samaha F. J. Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Exp Neurol. 1969 Sep;25(1):138–152. doi: 10.1016/0014-4886(69)90077-6. [DOI] [PubMed] [Google Scholar]
- Hughes R. L., Katz H., Sahgal V., Campbell J. A., Hartz R., Shields T. W. Fiber size and energy metabolites in five separate muscles from patients with chronic obstructive lung diseases. Respiration. 1983;44(5):321–328. doi: 10.1159/000194564. [DOI] [PubMed] [Google Scholar]
- Ianuzzo C. D., Noble E. G., Hamilton N., Dabrowski B. Effects of streptozotocin diabetes, insulin treatment, and training on the diaphragm. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jun;52(6):1471–1475. doi: 10.1152/jappl.1982.52.6.1471. [DOI] [PubMed] [Google Scholar]
- Ishikawa S., Hayes J. A. Functional morphotometry of the diaphragm in patients with chronic obstructive lung disease. Am Rev Respir Dis. 1973 Jul;108(1):135–138. doi: 10.1164/arrd.1973.108.1.135. [DOI] [PubMed] [Google Scholar]
- Keens T. G., Chen V., Patel P., O'Brien P., Levison H., Ianuzzo C. D. Cellular adaptations of the ventilatory muscles to a chronic increased respiratory load. J Appl Physiol Respir Environ Exerc Physiol. 1978 Jun;44(6):905–908. doi: 10.1152/jappl.1978.44.6.905. [DOI] [PubMed] [Google Scholar]
- Keens T. G., Krastins I. R., Wannamaker E. M., Levison H., Crozier D. N., Bryan A. C. Ventilatory muscle endurance training in normal subjects and patients with cystic fibrosis. Am Rev Respir Dis. 1977 Nov;116(5):853–860. doi: 10.1164/arrd.1977.116.5.853. [DOI] [PubMed] [Google Scholar]
- Kelsen S. G., Wolanski T., Supinski G. S., Roessmann U. The effect of elastase-induced emphysema on diaphragmatic muscle structure in hamsters. Am Rev Respir Dis. 1983 Mar;127(3):330–334. doi: 10.1164/arrd.1983.127.3.330. [DOI] [PubMed] [Google Scholar]
- Leith D. E., Bradley M. Ventilatory muscle strength and endurance training. J Appl Physiol. 1976 Oct;41(4):508–516. doi: 10.1152/jappl.1976.41.4.508. [DOI] [PubMed] [Google Scholar]
- Lieberman D. A., Maxwell L. C., Faulkner J. A. Adaptation of guinea pig diaphragm muscle to aging and endurance training. Am J Physiol. 1972 Mar;222(3):556–560. doi: 10.1152/ajplegacy.1972.222.3.556. [DOI] [PubMed] [Google Scholar]
- Mansour T. E., Wakid N., Sprouse H. M. Studies on heart phosphofructokinase. Purification, crystallization, and properties of sheep heart phosphofructokinase. J Biol Chem. 1966 Apr 10;241(7):1512–1521. [PubMed] [Google Scholar]
- Minh V. D., Dolan G. F., Konopka R. F., Moser K. M. Effect of hyperinflation on inspiratory function of the diaphragm. J Appl Physiol. 1976 Jan;40(1):67–73. doi: 10.1152/jappl.1976.40.1.67. [DOI] [PubMed] [Google Scholar]
- Moore R. L., Gollnick P. D. Response of ventilatory muscles of the rat to endurance training. Pflugers Arch. 1982 Jan;392(3):268–271. doi: 10.1007/BF00584308. [DOI] [PubMed] [Google Scholar]
- Park S. S., Goldring I. P., Shim C. S., Williams M. H., Jr Mechanical properties of the lung in experimental pulmonary emphysema. J Appl Physiol. 1969 Jun;26(6):738–744. doi: 10.1152/jappl.1969.26.6.738. [DOI] [PubMed] [Google Scholar]
- Peter J. B., Barnard R. J., Edgerton V. R., Gillespie C. A., Stempel K. E. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry. 1972 Jul 4;11(14):2627–2633. doi: 10.1021/bi00764a013. [DOI] [PubMed] [Google Scholar]
- Peter J. B., Verhaag D. A., Worsfold M. Studies of steroid myopathy. Examination of the possible effect of triamcinolone on mitochondria and sarcotubular vesicles of rat skeletal muscle. Biochem Pharmacol. 1970 May;19(5):1627–1636. doi: 10.1016/0006-2952(70)90151-6. [DOI] [PubMed] [Google Scholar]
- Riley D. A., Berger A. J. A regional histochemical and electromyographic analysis of the cat respiratory diaphragm. Exp Neurol. 1979 Dec;66(3):636–649. doi: 10.1016/0014-4886(79)90209-7. [DOI] [PubMed] [Google Scholar]
- Sanchez J., Derenne J. P., Debesse B., Riquet M., Monod H. Typology of the respiratory muscles in normal men and in patients with moderate chronic respiratory diseases. Bull Eur Physiopathol Respir. 1982 Nov-Dec;18(6):901–914. [PubMed] [Google Scholar]
- Scott K. W., Hoy J. The cross sectional area of diaphragmatic muscle fibres in emphysema, measured by an automated image analysis system. J Pathol. 1976 Oct;120(2):121–128. doi: 10.1002/path.1711200208. [DOI] [PubMed] [Google Scholar]
- Snider G. L., Sherter C. B. A one-year study of the evolution of elastase-induced emphysema in hamsters. J Appl Physiol Respir Environ Exerc Physiol. 1977 Oct;43(4):721–729. doi: 10.1152/jappl.1977.43.4.721. [DOI] [PubMed] [Google Scholar]
- WATTENBERG L. W., LEONG J. L. Effects of coenzyme Q10 and menadione on succinic dehydrogenase activity as measured by tetrazolium salt reduction. J Histochem Cytochem. 1960 Jul;8:296–303. doi: 10.1177/8.4.296. [DOI] [PubMed] [Google Scholar]
