Abstract
Purine nucleosides, which accumulate in adenosine deaminase and purine nucleoside phosphorylase deficiency, are toxic to lymphoid cells. Since adenine nucleosides inhibit S-adenosylhomocysteine hydrolase, they could potentially decrease intracellular methionine synthesis. To test this hypothesis, we measured methionine synthesis by the use of [14C]formate as a radioactive precursor in cultured human T and B lymphoblasts treated with varying concentrations of purine nucleosides; 2'-deoxycoformycin and 8-aminoguanosine were added to inhibit adenosine deaminase and purine nucleoside phosphorylase, respectively. In the T lymphoblasts methionine synthesis was inhibited approximately 50% by 10 microM of 2'-deoxyadenosine, adenine arabinoside, or 2'-deoxyguanosine. By contrast, in the B lymphoblasts methionine synthesis was considerably less affected by these nucleosides, with 50% inhibition occurring at 100 microM of 2'-deoxyadenosine and adenine arabinoside; 100 microM of 2'-deoxyguanosine yielded less than 10% inhibition. Adenosine and guanosine were considerably less potent inhibitors of methionine synthesis in both the T and B lymphoblasts. An adenosine deaminase-deficient and a purine nucleoside phosphorylase-deficient cell line, both of B cell origin, exhibited sensitivities to the nucleosides similar to those of the normal B cell lines. In both the T and B cell lines homocysteine reversed the methionine synthesis inhibition induced by the adenine nucleosides and guanosine and largely reversed that induced by 2'-deoxyguanosine. Methionine synthesis from homocysteine generates free tetrahydrofolate from 5-methyltetrahydrofolate, the main intracellular storage form of folate. We conclude that purine nucleoside toxicity may be partly mediated through (a) decreased intracellular methionine synthesis, and (b) altered folate metabolism.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boss G. R., Erbe R. W. Decreased purine synthesis during amino acid starvation of human lymphoblasts. J Biol Chem. 1982 Apr 25;257(8):4242–4247. [PubMed] [Google Scholar]
- Boss G. R., Erbe R. W. Decreased rates of methionine synthesis by methylene tetrahydrofolate reductase-deficient fibroblasts and lymphoblasts. J Clin Invest. 1981 Jun;67(6):1659–1664. doi: 10.1172/JCI110202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boss G. R., Seegmiller J. E. Genetic defects in human purine and pyrimidine metabolism. Annu Rev Genet. 1982;16:297–328. doi: 10.1146/annurev.ge.16.120182.001501. [DOI] [PubMed] [Google Scholar]
- Cantoni G. L., Aksamit R. R., Kim I. K. Methionine biosynthesis and vidarabine therapy. N Engl J Med. 1982 Oct 21;307(17):1079–1079. doi: 10.1056/NEJM198210213071713. [DOI] [PubMed] [Google Scholar]
- Carson D. A., Kaye J., Matsumoto S., Seegmiller J. E., Thompson L. Biochemical basis for the enhanced toxicity of deoxyribonucleosides toward malignant human T cell lines. Proc Natl Acad Sci U S A. 1979 May;76(5):2430–2433. doi: 10.1073/pnas.76.5.2430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erbe R. W. Genetic aspects of folate metabolism. Adv Hum Genet. 1979;9:293-354, 367-9. doi: 10.1007/978-1-4615-8276-2_5. [DOI] [PubMed] [Google Scholar]
- German D. C., Bloch C. A., Kredich N. M. Measurements of S-adenosylmethionine and L-homocysteine metabolism in cultured human lymphoid cells. J Biol Chem. 1983 Sep 25;258(18):10997–11003. [PubMed] [Google Scholar]
- Giblett E. R., Ammann A. J., Wara D. W., Sandman R., Diamond L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975 May 3;1(7914):1010–1013. doi: 10.1016/s0140-6736(75)91950-9. [DOI] [PubMed] [Google Scholar]
- Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
- Helland S., Ueland P. M. Inactivation of S-adenosylhomocysteine hydrolase by 9-beta-D-arabinofuranosyladenine in intact cells. Cancer Res. 1982 Mar;42(3):1130–1136. [PubMed] [Google Scholar]
- Hershfield M. S. Apparent suicide inactivation of human lymphoblast S-adenosylhomocysteine hydrolase by 2'-deoxyadenosine and adenine arabinoside. A basis for direct toxic effects of analogs of adenosine. J Biol Chem. 1979 Jan 10;254(1):22–25. [PubMed] [Google Scholar]
- Hershfield M. S., Kredich N. M., Ownby D. R., Ownby H., Buckley R. In vivo inactivation of erythrocyte S-adenosylhomocysteine hydrolase by 2'-deoxyadenosine in adenosine deaminase-deficient patients. J Clin Invest. 1979 Apr;63(4):807–811. doi: 10.1172/JCI109367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hershfield M. S. Proposed explanation for S-adenosylhomocysteine hydrolase deficiency in purine nucleoside phosphorylase and hypoxanthine-guanine phosphoribosyltransferase-deficient patients. J Clin Invest. 1981 Mar;67(3):696–701. doi: 10.1172/JCI110085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutton J. J., Wiginton D. A., Coleman M. S., Fuller S. A., Limouze S., Lampkin B. C. Biochemical and functional abnormalities in lymphocytes from an adenosine deaminase-deficient patient during enzyme replacement therapy. J Clin Invest. 1981 Aug;68(2):413–421. doi: 10.1172/JCI110270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaminska J. E., Fox I. H. Decreased S-adenosylhomocysteine hydrolase in inborn errors of purine metabolism. J Lab Clin Med. 1980 Jul;96(1):141–147. [PubMed] [Google Scholar]
- Kazmers I. S., Mitchell B. S., Dadonna P. E., Wotring L. L., Townsend L. B., Kelley W. N. Inhibition of purine nucleoside phosphorylase by 8-aminoguanosine: selective toxicity for T lymphoblasts. Science. 1981 Dec 4;214(4525):1137–1139. doi: 10.1126/science.6795718. [DOI] [PubMed] [Google Scholar]
- Kefford R. F., Fox R. M. Deoxycoformycin-induced response in chronic lymphocytic leukaemia: deoxyadenosine toxicity in non-replicating lymphocytes. Br J Haematol. 1982 Apr;50(4):627–636. doi: 10.1111/j.1365-2141.1982.tb01963.x. [DOI] [PubMed] [Google Scholar]
- Kefford R. F., Fox R. M. Purine deoxynucleoside toxicity in nondividing human lymphoid cells. Cancer Res. 1982 Jan;42(1):324–330. [PubMed] [Google Scholar]
- Kredich N. M., Martin D. V., Jr Role of S-adenosylhomocysteine in adenosinemediated toxicity in cultured mouse T lymphoma cells. Cell. 1977 Dec;12(4):931–938. doi: 10.1016/0092-8674(77)90157-x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mitchell B. S., Mejias E., Daddona P. E., Kelley W. N. Purinogenic immunodeficiency diseases: selective toxicity of deoxyribonucleosides for T cells. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5011–5014. doi: 10.1073/pnas.75.10.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perry T. L., Hansen S., Love D. L., Crawford L. E., Tischler B. Treatment of homocystinuria with a low-methionine diet, supplemental cystine, and a methyl donor. Lancet. 1968 Aug 31;2(7566):474–478. doi: 10.1016/s0140-6736(68)90646-6. [DOI] [PubMed] [Google Scholar]
- Perry T. L., Hansen S., MacDougall L., Warrington P. D. Sulfur-containing amino acids in the plasma and urine of homocystinurics. Clin Chim Acta. 1967 Mar;15(3):409–420. doi: 10.1016/0009-8981(67)90005-8. [DOI] [PubMed] [Google Scholar]
- Pilz R. B., Willis R. C., Seegmiller J. E. Regulation of human lymphoblast plasma membrane 5'-nucleotidase by zinc. J Biol Chem. 1982 Nov 25;257(22):13544–13549. [PubMed] [Google Scholar]
- Rosenblatt D. S., Cooper B. A., Lue-Shing S., Wong P. W., Berlow S., Narisawa K., Baumgartner R. Folate distribution in cultured human cells. Studies on 5,10-CH2-H4PteGlu reductase deficiency. J Clin Invest. 1979 May;63(5):1019–1025. doi: 10.1172/JCI109370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sacks S. L., Merigan T. C., Kaminska J., Fox I. H. Inactivation of S-adenosylhomocysteine hydrolase during adenine arabinoside therapy. J Clin Invest. 1982 Jan;69(1):226–230. doi: 10.1172/JCI110434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuh S., Rosenblatt D. S., Cooper B. A., Schroeder M. L., Bishop A. J., Seargeant L. E., Haworth J. C. Homocystinuria and megaloblastic anemia responsive to vitamin B12 therapy. An inborn error of metabolism due to a defect in cobalamin metabolism. N Engl J Med. 1984 Mar 15;310(11):686–690. doi: 10.1056/NEJM198403153101104. [DOI] [PubMed] [Google Scholar]
- Staal G. E., Stoop J. W., Zegers B. J., Siegenbeek van Heukelom L. H., van der Vlist M. J., Wadman S. K., Martin D. W. Erythrocyte metabolism in purine nucleoside phosphorylase deficiency after enzyme replacement therapy by infusion of erythrocytes. J Clin Invest. 1980 Jan;65(1):103–108. doi: 10.1172/JCI109639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wortmann R. L., Mitchell B. S., Edwards N. L., Fox I. H. Biochemical basis for differential deoxyadenosine toxicity to T and B lymphoblasts: role for 5'-nucleotidase. Proc Natl Acad Sci U S A. 1979 May;76(5):2434–2437. doi: 10.1073/pnas.76.5.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
