Abstract
The surfactant fraction (55,000-g pellet) of leukocyte-free rat bronchoalveolar lavage fluid contains factors that rapidly kill and lyse pneumococci. These factors were purified and identified biochemically by using a quantitative bactericidal test to monitor fractionation procedures. 91% of the antipneumococcal activity of rat surfactant was recovered in chloroform after extraction of rat surfactant with chloroform-methanol (Bligh-Dyer procedure). After chromatography on silicic acid with chloroform, acetone, and methanol, all detectable antibacterial activity (approximately 80% of the initial activity) eluted with the neutral lipids in chloroform. When rechromatographed on silicic acid with hexane, hexane-chloroform, and chloroform, the antibacterial activity eluted with FFA. Thin-layer chromatography (TLC) established that the antibacterial activity was confined to the FFA fraction. Gas-liquid chromatography showed that the fatty acid fraction contained a mixture of long-chain FFA (C12 to C22) of which 66.7% were saturated and 32.4% were unsaturated. The quantity of TLC-purified FFA needed to kill 50% of 10(8) pneumococci under standardized conditions (one bactericidal unit) was 10.6 +/- 0.5 micrograms. Purified FFA acted as detergents, causing release of [3H]choline from pneumococcal cell walls and increased bacterial cell membrane permeability, evidenced by rapid unloading of 3-O-[3H]methyl-D-glucose. FFA acting as detergents appear to account for the bactericidal and bacteriolytic activity of rat pulmonary surfactant for pneumococci.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aly R., Maibach H. I., Rahman R., Shinefield H. R., Mandel A. D. Correlation of human in vivo and in vitro cutaneous antimicrobial factors. J Infect Dis. 1975 May;131(5):579–583. doi: 10.1093/infdis/131.5.579. [DOI] [PubMed] [Google Scholar]
- Aly R., Maibach H. I., Shinefield H. R., Strauss W. G. Survival of pathogenic microorganisms on human skin. J Invest Dermatol. 1972 Apr;58(4):205–210. doi: 10.1111/1523-1747.ep12539912. [DOI] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Baughn R., Bonventre P. F. Phagocytosis and intracellular killing of Staphylococcus aureus by normal mouse peritoneal macrophages. Infect Immun. 1975 Aug;12(2):346–352. doi: 10.1128/iai.12.2.346-352.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coonrod J. D., Rehm S. R. Complement receptors of rat macrophages. J Reticuloendothel Soc. 1982 Feb;31(2):107–115. [PubMed] [Google Scholar]
- Coonrod J. D., Yoneda K. Complement and opsonins in alveolar secretions and serum of rats with pneumonia due to Streptococcus pneumoniae. Rev Infect Dis. 1981 Mar-Apr;3(2):310–322. doi: 10.1093/clinids/3.2.310. [DOI] [PubMed] [Google Scholar]
- Coonrod J. D., Yoneda K. Detection and partial characterization of antibacterial factor(s) in alveolar lining material of rats. J Clin Invest. 1983 Jan;71(1):129–141. doi: 10.1172/JCI110741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coonrod J. D., Yoneda K. Effect of rat alveolar lining material on macrophage receptors. J Immunol. 1983 Jun;130(6):2589–2596. [PubMed] [Google Scholar]
- Dauber J. H., Daniele R. P. Chemotactic activity of guinea pig alveolar macrophages. Am Rev Respir Dis. 1978 Apr;117(4):673–684. doi: 10.1164/arrd.1978.117.4.673. [DOI] [PubMed] [Google Scholar]
- Davis M. T., Silbert D. F. Changes in cell permeability following a marked reduction of saturated fatty acid content of Escherichia coli K-12. Biochim Biophys Acta. 1974 Dec 10;373(2):224–241. doi: 10.1016/0005-2736(74)90147-3. [DOI] [PubMed] [Google Scholar]
- Dye E. S., Kapral F. A. Characterization of a bactericidal lipid developing within staphylococcal abscesses. Infect Immun. 1981 Apr;32(1):98–104. doi: 10.1128/iai.32.1.98-104.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fay J. P., Farias R. N. The inhibitory action of fatty acids on the growth of Escherichia coli. J Gen Microbiol. 1975 Dec;91(2):233–240. doi: 10.1099/00221287-91-2-233. [DOI] [PubMed] [Google Scholar]
- Fay J. P., Farías R. N. Inhibitory action of a non-metabolizable fatty acid on the growth of Escherichia coli: role of metabolism and outer membrane integrity. J Bacteriol. 1977 Dec;132(3):790–795. doi: 10.1128/jb.132.3.790-795.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Finley T. N., Ladman A. J. Low yield of pulmonary surfactant in cigarette smokers. N Engl J Med. 1972 Feb 3;286(5):223–227. doi: 10.1056/NEJM197202032860501. [DOI] [PubMed] [Google Scholar]
- Fuller R., Moore J. H. The inhibition of the growth of Clostridium welchii by lipids isolated from the contents of the small intestine of the pig. J Gen Microbiol. 1967 Jan;46(1):23–41. doi: 10.1099/00221287-46-1-23. [DOI] [PubMed] [Google Scholar]
- GREEN G. M., KASS E. H. FACTORS INFLUENCING THE CLEARANCE OF BACTERIA BY THE LUNG. J Clin Invest. 1964 Apr;43:769–776. doi: 10.1172/JCI104961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN G. M., KASS E. H. THE ROLE OF THE ALVEOLAR MACROPHAGE IN THE CLEARANCE OF BACTERIA FROM THE LUNG. J Exp Med. 1964 Jan 1;119:167–176. doi: 10.1084/jem.119.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galbraith H., Miller T. B., Paton A. M., Thompson J. K. Antibacterial activity of long chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J Appl Bacteriol. 1971 Dec;34(4):803–813. doi: 10.1111/j.1365-2672.1971.tb01019.x. [DOI] [PubMed] [Google Scholar]
- Galbraith H., Miller T. B. Physicochemical effects of long chain fatty acids on bacterial cells and their protoplasts. J Appl Bacteriol. 1973 Dec;36(4):647–658. doi: 10.1111/j.1365-2672.1973.tb04150.x. [DOI] [PubMed] [Google Scholar]
- Goldman A. S., Smith C. W. Host resistance factors in human milk. J Pediatr. 1973 Jun;82(6):1082–1090. doi: 10.1016/s0022-3476(73)80453-6. [DOI] [PubMed] [Google Scholar]
- Goldstein E., Lippert W., Warshauer D. Pulmonary alveolar macrophage. Defender against bacterial infection of the lung. J Clin Invest. 1974 Sep;54(3):519–528. doi: 10.1172/JCI107788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harmsen A. G., Jeska E. L. Surface receptors on porcine alveolar macrophages and their role in phagocytosis. J Reticuloendothel Soc. 1980 Jun;27(6):631–637. [PubMed] [Google Scholar]
- Heczko P. B., Lütticken R., Hryniewicz W., Neugebauer M., Pulverer G. Susceptibility of Staphylococcus aureus and group A, B, C, and G streptococci to free fatty acids. J Clin Microbiol. 1979 Mar;9(3):333–335. doi: 10.1128/jcm.9.3.333-335.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingram L. O., Eaton L. C., Erdos G. W., Tedder T. F., Vreeland N. L. Unsaturated fatty acid requirement in Escherichia coli: mechanism of palmitate-induced inhibition of growth of strain WN1. J Membr Biol. 1982;65(1-2):31–40. doi: 10.1007/BF01870466. [DOI] [PubMed] [Google Scholar]
- Juers J. A., Rogers R. M., McCurdy J. B., Cook W. W. Enhancement of bactericidal capacity of alveolar macrophages by human alveolar lining material. J Clin Invest. 1976 Aug;58(2):271–275. doi: 10.1172/JCI108468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabara J. J., Swieczkowski D. M., Conley A. J., Truant J. P. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother. 1972 Jul;2(1):23–28. doi: 10.1128/aac.2.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabara J. J., Vrable R. Antimicrobial lipids: natural and synthetic fatty acids and monoglycerides. Lipids. 1977 Sep;12(9):753–759. doi: 10.1007/BF02570908. [DOI] [PubMed] [Google Scholar]
- Kim M., Goldstein E., Lewis J. P., Lippert W., Warshauer D. Murine pulmonary alveolar macrophages: rates of bacterial ingestion, inactivation, and destruction. J Infect Dis. 1976 Mar;133(3):310–320. doi: 10.1093/infdis/133.3.310. [DOI] [PubMed] [Google Scholar]
- King R. J., Clements J. A. Surface active materials from dog lung. II. Composition and physiological correlations. Am J Physiol. 1972 Sep;223(3):715–726. doi: 10.1152/ajplegacy.1972.223.3.715. [DOI] [PubMed] [Google Scholar]
- Kohn A., Gitelman J., Inbar M. Unsaturated free fatty acids inactivate animal enveloped viruses. Arch Virol. 1980;66(4):301–307. doi: 10.1007/BF01320626. [DOI] [PubMed] [Google Scholar]
- LaForce F. M., Kelly W. J., Huber G. L. Inactivation of staphylococci by alveolar macrophages with preliminary observations on the importance of alveolar lining material. Am Rev Respir Dis. 1973 Oct;108(4):784–790. doi: 10.1164/arrd.1973.108.4.784. [DOI] [PubMed] [Google Scholar]
- Larsson K., Norén B., Odham G. Antimicrobial effect of simple lipids with different branches at the methyl end group. Antimicrob Agents Chemother. 1975 Dec;8(6):742–750. doi: 10.1128/aac.8.6.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFarland L., Mietzner T. A., Knapp J. S., Sandstrom E., Holmes K. K., Morse S. A. Gonococcal sensitivity to fecal lipids can be mediated by an Mtr-independent mechanism. J Clin Microbiol. 1983 Jul;18(1):121–127. doi: 10.1128/jcm.18.1.121-127.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michael R. P., Bonsall R. W., Warner P. Human vaginal secretions: volatile fatty acid content. Science. 1974 Dec 27;186(4170):1217–1219. doi: 10.1126/science.186.4170.1217. [DOI] [PubMed] [Google Scholar]
- Miller R. D., Brown K. E., Morse S. A. Inhibitory action of fatty acids on the growth of Neisseria gonorrhoeae. Infect Immun. 1977 Aug;17(2):303–312. doi: 10.1128/iai.17.2.303-312.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mårdh P. A., Taylor-Robinson D. The susceptibility of aerobic and anaerobic bacteria, L-phase variants, candida, protozoa and viruses to lysolecithin. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Dec;82(6):748–752. doi: 10.1111/j.1699-0463.1974.tb02372.x. [DOI] [PubMed] [Google Scholar]
- NIEMAN C. Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol Rev. 1954 Jun;18(2):147–163. doi: 10.1128/br.18.2.147-163.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nugent K. M., Pesanti E. L. Nonphagocytic clearance of Staphylococcus aureus from murine lungs. Infect Immun. 1982 Jun;36(3):1185–1191. doi: 10.1128/iai.36.3.1185-1191.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PRINCE H. N. Effect of pH on the antifungal activity of undecylenic acid and its calcium salt. J Bacteriol. 1959 Dec;78:788–791. doi: 10.1128/jb.78.6.788-791.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfleger R. C., Thomas H. G. Beagle dog pulmonary surfactant lipids. Lipid composition of pulmonary tissue, exfoliated lining cells and surfactant. Arch Intern Med. 1971 May;127(5):863–872. doi: 10.1001/archinte.127.5.863. [DOI] [PubMed] [Google Scholar]
- Rehm S. R., Coonrod J. D. Early clearance of pneumococci from the lungs of decomplemented rats. Infect Immun. 1982 Apr;36(1):24–29. doi: 10.1128/iai.36.1.24-29.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sands J., Auperin D., Snipes W. Extreme sensitivity of enveloped viruses, including herpes simplex, to long-chain unsaturated monoglycerides and alcohols. Antimicrob Agents Chemother. 1979 Jan;15(1):67–73. doi: 10.1128/aac.15.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheu C. W., Freese E. Lipopolysaccharide layer protection of gram-negative bacteria against inhibition by long-chain fatty acids. J Bacteriol. 1973 Sep;115(3):869–875. doi: 10.1128/jb.115.3.869-875.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheu C. W., Konings W. N., Freese E. Effects of acetate and other short-chain fatty acids on sugar and amino acid uptake of Bacillus subtilis. J Bacteriol. 1972 Aug;111(2):525–530. doi: 10.1128/jb.111.2.525-530.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soltesz L. V., Mårdh P. A. The lytic effect of lysolecithin on acholeplasmas and mycoplasmas. Acta Pathol Microbiol Scand B. 1977 Aug;85(4):255–261. doi: 10.1111/j.1699-0463.1977.tb01971.x. [DOI] [PubMed] [Google Scholar]
- Territo M. C., Golde D. W. The function of human alveolar macrophages. J Reticuloendothel Soc. 1979 Jan;25(1):111–120. [PubMed] [Google Scholar]
- Tomasz A. The role of autolysins in cell death. Ann N Y Acad Sci. 1974 May 10;235(0):439–447. doi: 10.1111/j.1749-6632.1974.tb43282.x. [DOI] [PubMed] [Google Scholar]
- Warr G. A., Jakab G. J., Hearst J. E. Alterations in lung macrophage immune receptor(s) activity associated with viral pneumonia. J Reticuloendothel Soc. 1979 Oct;26(4):357–366. [PubMed] [Google Scholar]
- van oud Alblas A. B., van Furth R. Origin, Kinetics, and characteristics of pulmonary macrophages in the normal steady state. J Exp Med. 1979 Jun 1;149(6):1504–1518. doi: 10.1084/jem.149.6.1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
