Abstract
Inherited deficiency of the enzyme purine nucleoside phosphorylase (PNP) results in selective and severe T lymphocyte depletion which is mediated by its substrate, 2'-deoxyguanosine. This observation provides a rationale for the use of PNP inhibitors as selective T cell immunosuppressive agents. We have studied the relative effects of the PNP inhibitor 8-aminoguanosine on the metabolism and growth of lymphoid cell lines of T and B cell origin. We have found that 2'-deoxyguanosine toxicity for T lymphoblasts is markedly potentiated by 8-aminoguanosine and is mediated by the accumulation of deoxyguanosine triphosphate. In contrast, the growth of T4+ mature T cell lines and B lymphoblast cell lines is inhibited by somewhat higher concentrations of 2'-deoxyguanosine (ID50 20 and 18 microM, respectively) in the presence of 8-aminoguanosine without an increase in deoxyguanosine triphosphate levels. Cytotoxicity correlates instead with a three- to fivefold increase in guanosine triphosphate (GTP) levels after 24 h. Accumulation of GTP and growth inhibition also result from exposure to guanosine, but not to guanine at equimolar concentrations. B lymphoblasts which are deficient in the purine salvage enzyme hypoxanthine guanine phosphoribosyltransferase are completely resistant to 2'-deoxyguanosine or guanosine concentrations up to 800 microM and do not demonstrate an increase in GTP levels. Growth inhibition and GTP accumulation are prevented by hypoxanthine or adenine, but not by 2'-deoxycytidine. 8-Aminoguanosine appears to effectively inhibit extracellular PNP activity; thus, it prolongs the extracellular half-life of 2'-deoxyguanosine and guanosine, but does not completely inhibit intracellular PNP activity in these lymphoid cells. As a result, 2'-deoxyguanosine and guanosine are phosphorolyzed and actively salvaged within the cell, accounting for the accumulation of GTP. Partial inhibition of PNP activity in vivo, therefore, may lead to nonselective cellular toxicity by a mechanism independent of dGTP accumulation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bagnara A. S., Letter A. A., Henderson J. F. Multiple mechanisms of regulation of purine biosynthesis de novo in intact tumor cells. Biochim Biophys Acta. 1974 Dec 20;374(3):259–270. doi: 10.1016/0005-2787(74)90247-0. [DOI] [PubMed] [Google Scholar]
- Brenton D. P., Astrin K. H., Cruikshank M. K., Seegmiller J. E. Measurement of free nucleotides in cultured human lymphoid cells using high pressure liquid chromatography. Biochem Med. 1977 Jun;17(3):231–247. doi: 10.1016/0006-2944(77)90029-1. [DOI] [PubMed] [Google Scholar]
- Carson D. A., Kaye J., Matsumoto S., Seegmiller J. E., Thompson L. Biochemical basis for the enhanced toxicity of deoxyribonucleosides toward malignant human T cell lines. Proc Natl Acad Sci U S A. 1979 May;76(5):2430–2433. doi: 10.1073/pnas.76.5.2430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carson D. A., Wasson D. B., Lakow E., Kamatani N. Possible metabolic basis for the different immunodeficient states associated with genetic deficiencies of adenosine deaminase and purine nucleoside phosphorylase. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3848–3852. doi: 10.1073/pnas.79.12.3848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan T. S. Deoxyguanosine toxicity on lymphoid cells as a cause for immunosuppression in purine nucleoside phosphorylase deficiency. Cell. 1978 Jul;14(3):523–530. doi: 10.1016/0092-8674(78)90238-6. [DOI] [PubMed] [Google Scholar]
- Cohen A., Doyle D., Martin D. W., Jr, Ammann A. J. Abnormal purine metabolism and purine overproduction in a patient deficient in purine nucleoside phosphorylase. N Engl J Med. 1976 Dec 23;295(26):1449–1454. doi: 10.1056/NEJM197612232952603. [DOI] [PubMed] [Google Scholar]
- Cohen A., Gudas L. J., Ammann A. J., Staal G. E., Martin D. W., Jr Deoxyguanosine triphosphate as a possible toxic metabolite in the immunodeficiency associated with purine nucleoside phosphorylase deficiency. J Clin Invest. 1978 May;61(5):1405–1409. doi: 10.1172/JCI109058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen A., Lee J. W., Dosch H. M., Gelfand E. W. The expression of deoxyguanosine toxicity in T lymphocytes at different stages of maturation. J Immunol. 1980 Oct;125(4):1578–1582. [PubMed] [Google Scholar]
- Gazdar A. F., Carney D. N., Bunn P. A., Russell E. K., Jaffe E. S., Schechter G. P., Guccion J. G. Mitogen requirements for the in vitro propagation of cutaneous T-cell lymphomas. Blood. 1980 Mar;55(3):409–417. [PubMed] [Google Scholar]
- Giblett E. R., Ammann A. J., Wara D. W., Sandman R., Diamond L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975 May 3;1(7914):1010–1013. doi: 10.1016/s0140-6736(75)91950-9. [DOI] [PubMed] [Google Scholar]
- Gudas L. J., Ullman B., Cohen A., Martin D. W., Jr Deoxyguanosine toxicity in a mouse T lymphoma: relationship to purine nucleoside phosphorylase-associated immune dysfunction. Cell. 1978 Jul;14(3):531–538. doi: 10.1016/0092-8674(78)90239-8. [DOI] [PubMed] [Google Scholar]
- Holmes E. W., McDonald J. A., McCord J. M., Wyngaarden J. B., Kelley W. N. Human glutamine phosphoribosylpyrophosphate amidotransferase. Kinetic and regulatory properties. J Biol Chem. 1973 Jan 10;248(1):144–150. [PubMed] [Google Scholar]
- Itakura M., Sabina R. L., Heald P. W., Holmes E. W. Basis for the control of purine biosynthesis by purine ribonucleotides. J Clin Invest. 1981 Apr;67(4):994–1002. doi: 10.1172/JCI110150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koller C. A., Stetson P. L., Nichamin L. D., Mitchell B. S. An assay of deoxyadenosine and adenosine in human plasma by HPLC. Biochem Med. 1980 Oct;24(2):179–184. doi: 10.1016/0006-2944(80)90009-5. [DOI] [PubMed] [Google Scholar]
- Martin D. W., Jr, Gelfand E. W. Biochemistry of diseases of immunodevelopment. Annu Rev Biochem. 1981;50:845–877. doi: 10.1146/annurev.bi.50.070181.004213. [DOI] [PubMed] [Google Scholar]
- Marz R., Wohlhueter R. M., Plagemann P. G. Purine and pyrimidine transport and phosphoribosylation and their interaction in overall uptake by cultured mammalian cells. A re-evaluation. J Biol Chem. 1979 Apr 10;254(7):2329–2338. [PubMed] [Google Scholar]
- May R. A., Hoffee P. Guanosine metabolism in Novikoff hepatoma cells: isolation and characterization of guanosine resistant variants. Arch Biochem Biophys. 1978 Oct;190(2):712–719. doi: 10.1016/0003-9861(78)90331-4. [DOI] [PubMed] [Google Scholar]
- Mitchell B. S., Mejias E., Daddona P. E., Kelley W. N. Purinogenic immunodeficiency diseases: selective toxicity of deoxyribonucleosides for T cells. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5011–5014. doi: 10.1073/pnas.75.10.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborne W. R., Scott C. R. The metabolism of deoxyguanosine and guanosine in human B and T lymphoblasts. A role for deoxyguanosine kinase activity in the selective T-cell defect associated with purine nucleoside phosphorylase deficiency. Biochem J. 1983 Sep 15;214(3):711–718. doi: 10.1042/bj2140711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poiesz B. J., Ruscetti F. W., Gazdar A. F., Bunn P. A., Minna J. D., Gallo R. C. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7415–7419. doi: 10.1073/pnas.77.12.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmonds H. A., Watson A. R., Webster D. R., Sahota A., Perrett D. GTP depletion and other erythrocyte abnormalities in inherited PNP deficiency. Biochem Pharmacol. 1982 Mar 15;31(6):941–946. doi: 10.1016/0006-2952(82)90324-0. [DOI] [PubMed] [Google Scholar]
- Spaapen L. J., Rijkers G. T., Staal G. E., Rijksen G., Wadman S. K., Stoop J. W., Zegers B. J. The effect of deoxyguanosine on human lymphocyte function. I. Analysis of the interference with lymphocyte proliferation in vitro. J Immunol. 1984 May;132(5):2311–2317. [PubMed] [Google Scholar]
- Stoeckler J. D., Cambor C., Kuhns V., Chu S. H., Parks R. E., Jr Inhibitors of purine nucleoside phosphorylase, C(8) and C(5') substitutions. Biochem Pharmacol. 1982 Jan 15;31(2):163–171. doi: 10.1016/0006-2952(82)90206-4. [DOI] [PubMed] [Google Scholar]
- Tu A. S., Patterson D. Characterization of a guanine-sensitive mutant defective in adenylo-succinate synthetase activity. J Cell Physiol. 1978 Jul;96(1):123–132. doi: 10.1002/jcp.1040960115. [DOI] [PubMed] [Google Scholar]
- Ullman B., Clift S. M., Cohen A., Gudas L. J., Levinson B. B., Wormsted M. A., Martin D. W., Jr Abnormal regulation of de novo purine synthesis and purine salvage in a cultured mouse T-cell lymphoma mutant partially deficient in adenylosuccinate synthetase. J Cell Physiol. 1979 Apr;99(1):139–151. doi: 10.1002/jcp.1040990115. [DOI] [PubMed] [Google Scholar]
- Ullman B., Clift S. M., Gudas L. J., Levinson B. B., Wormsted M. A., Martin D. W., Jr Alterations in deoxyribonucleotide metabolism in cultured cells with ribonucleotide reductase activities refractory to feedback inhibition by 2'-deoxyadenosine triphosphate. J Biol Chem. 1980 Sep 10;255(17):8308–8314. [PubMed] [Google Scholar]
- Wilson J. M., Mitchell B. S., Daddona P. E., Kelley W. N. Purinogenic immunodeficiency diseases. Differential effects of deoxyadenosine and deoxyguanosine on DNA synthesis in human T lymphoblasts. J Clin Invest. 1979 Nov;64(5):1475–1484. doi: 10.1172/JCI109606. [DOI] [PMC free article] [PubMed] [Google Scholar]