Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Nov;74(5):1686–1692. doi: 10.1172/JCI111585

Role of phorbol diesters in in vitro murine megakaryocyte colony formation.

M W Long, J E Smolen, P Szczepanski, L A Boxer
PMCID: PMC425346  PMID: 6501566

Abstract

In vitro megakaryocyte differentiation is regulated by two activities: a megakaryocyte colony-stimulating activity (Mk-CSA), which is required for proliferation, and an auxiliary factor, megakaryocyte potentiating activity, which plays a role in later differentiation events. Tumor-promoting phorbol esters alter many cellular differentiation-related events. Thus, it was hypothesized that phorbol esters may bring about megakaryocyte differentiation in vitro. 4 beta-Phorbol 12-myristate 13-acetate (PMA), when co-cultured with a source of Mk-CSA, stimulated a threefold increase in colony numbers. Co-culture of PMA and megakaryocyte potentiator activity did not stimulate colony formation, thus eliminating any action of PMA as an Mk-CSA. The direct effect of PMA on the formation of megakaryocyte colonies was established by (a) the function of PMA as a megakaryocyte potentiator in serum-free experiments, (b) the ability of PMA to stimulate megakaryocyte colony formation using bone marrow cells depleted of populations known to produce potentiating activity, (c) the inability of bone marrow adherent cells previously treated with phorbol, 12,13-dibutyrate (PDBu) to augment megakaryocyte colony formation, and (d) the ability of PMA to induce the growth of immature megakaryocytes into large single megakaryocytes. Structure:activity experiments resulted in equivalent activities for PMA and PDBu, whereas the nontumor promoter phorbol 12,13-diacetate and phorbol itself lacked activity. The observations in this study indicate that phorbol esters can bring about megakaryocyte differentiation, and during colony formation, can induce effects identical to those brought about by biological sources of megakaryocyte potentiator activity.

Full text

PDF
1686

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burstein S. A., Adamson J. W., Thorning D., Harker L. A. Characteristics of murine megakaryocytic colonies in vitro. Blood. 1979 Jul;54(1):169–179. [PubMed] [Google Scholar]
  2. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  3. End D., Tolson N., Yu M. Y., Guroff G. Effects of 12-0-Tetradecanoylphorbol-13-acetate (TPA) on rat pheochromocytoma (PC12) cells: interactions with epidermal growth factor and nerve growth factor. J Cell Physiol. 1982 May;111(2):140–148. doi: 10.1002/jcp.1041110204. [DOI] [PubMed] [Google Scholar]
  4. Iscove N. N., Melchers F. Complete replacement of serum by albumin, transferrin, and soybean lipid in cultures of lipopolysaccharide-reactive B lymphocytes. J Exp Med. 1978 Mar 1;147(3):923–933. doi: 10.1084/jem.147.3.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kawahara Y., Takai Y., Minakuchi R., Sano K., Nishizuka Y. Possible involvement of Ca2+-activated, phospholipid-dependent protein kinase in platelet activation. J Biochem. 1980 Sep;88(3):913–916. doi: 10.1093/oxfordjournals.jbchem.a133048. [DOI] [PubMed] [Google Scholar]
  6. Levine R. F., Fedorko M. E. Isolation of intact megakaryocytes from guinea pig femoral marrow. Successful harvest made possible with inhibitions of platelet aggregation; enrichment achieved with a two-step separation technique. J Cell Biol. 1976 Apr;69(1):159–172. doi: 10.1083/jcb.69.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Long M. W., Williams N., Ebbe S. Immature megakaryocytes in the mouse: physical characteristics, cell cycle status, and in vitro responsiveness to thrombopoietic stimulatory factor. Blood. 1982 Mar;59(3):569–575. [PubMed] [Google Scholar]
  8. Long M. W., Williams N. Immature Megakaryocytes in the Mouse: Morphology and quantitation by acetylcholinesterase staining. Blood. 1981 Nov;58(5):1032–1039. [PubMed] [Google Scholar]
  9. Long M. W., Williams N., McDonald T. P. Immature megakaryocytes in the mouse: in vitro relationship to megakaryocyte progenitor cells and mature megakaryocytes. J Cell Physiol. 1982 Sep;112(3):339–344. doi: 10.1002/jcp.1041120305. [DOI] [PubMed] [Google Scholar]
  10. Metcalf D., MacDonald H. R., Odartchenko N., Sordat B. Growth of mouse megakaryocyte colonies in vitro. Proc Natl Acad Sci U S A. 1975 May;72(5):1744–1748. doi: 10.1073/pnas.72.5.1744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miller R. G., Phillips R. A. Separation of cells by velocity sedimentation. J Cell Physiol. 1969 Jun;73(3):191–201. doi: 10.1002/jcp.1040730305. [DOI] [PubMed] [Google Scholar]
  12. Niedel J. E., Kuhn L. J., Vandenbark G. R. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci U S A. 1983 Jan;80(1):36–40. doi: 10.1073/pnas.80.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pelus L. M., Broxmeyer H. E., Kurland J. I., Moore M. A. Regulation of macrophage and granulocyte proliferation. Specificities of prostaglandin E and lactoferrin. J Exp Med. 1979 Aug 1;150(2):277–292. doi: 10.1084/jem.150.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ralph P., Moore M. A., Nilsson K. Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med. 1976 Jun 1;143(6):1528–1533. doi: 10.1084/jem.143.6.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rovera G., O'Brien T. G., Diamond L. Induction of differentiation in human promyelocytic leukemia cells by tumor promoters. Science. 1979 May 25;204(4395):868–870. doi: 10.1126/science.286421. [DOI] [PubMed] [Google Scholar]
  16. Slaga T. J., Fischer S. M., Nelson K., Gleason G. L. Studies on the mechanism of skin tumor promotion: evidence for several stages in promotion. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3659–3663. doi: 10.1073/pnas.77.6.3659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Solanki V., Slaga T. J., Callaham M., Huberman E. Down regulation of specific binding of [20-3H]phorbol 12,13-dibutyrate and phorbol ester-induced differentiation of human promyelocytic leukemia cells. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1722–1725. doi: 10.1073/pnas.78.3.1722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Williams N., Eger R. R., Jackson H. M., Nelson D. J. Two-factor requirement for murine megakaryocyte colony formation. J Cell Physiol. 1982 Jan;110(1):101–104. doi: 10.1002/jcp.1041100116. [DOI] [PubMed] [Google Scholar]
  19. Williams N., Jackson H. Kinetic analysis of megakaryocyte numbers and ploidy levels in developing colonies from mouse bone marrow cells. Cell Tissue Kinet. 1982 Sep;15(5):483–494. doi: 10.1111/j.1365-2184.1982.tb01571.x. [DOI] [PubMed] [Google Scholar]
  20. Williams N., Jackson H., Ralph P., Nakoinz I. Cell interactions influencing murine marrow megakaryocytes: nature of the potentiator cell in bone marrow. Blood. 1981 Jan;57(1):157–163. [PubMed] [Google Scholar]
  21. Williams N., Jackson H. Regulation of proliferation of murine megakaryocyte progenitor cells by cell cycle. Blood. 1978 Jul;52(1):163–170. [PubMed] [Google Scholar]
  22. Williams N. Preferential inhibition of murine macrophage colony formation by prostaglandin E. Blood. 1979 Jun;53(6):1089–1094. [PubMed] [Google Scholar]
  23. Wise B. C., Glass D. B., Chou C. H., Raynor R. L., Katoh N., Schatzman R. C., Turner R. S., Kibler R. F., Kuo J. F. Phospholipid-sensitive Ca2+-dependent protein kinase from heart. II. Substrate specificity and inhibition by various agents. J Biol Chem. 1982 Jul 25;257(14):8489–8495. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES