Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1984 Nov;74(5):1742–1749. doi: 10.1172/JCI111592

Nonenzymatic glycation of human lens crystallin. Effect of aging and diabetes mellitus.

R L Garlick, J S Mazer, L T Chylack Jr, W H Tung, H F Bunn
PMCID: PMC425353  PMID: 6438156

Abstract

We have examined the nonenzymatic glycation of human lens crystallin, an extremely long-lived protein, from 16 normal human ocular lenses 0.2-99 yr of age, and from 11 diabetic lenses 52-82-yr-old. The glucitol-lysine (Glc-Lys) content of soluble and insoluble crystallin was determined after reduction with H-borohydride followed by acid hydrolysis, boronic acid affinity chromatography, and high pressure cation exchange chromatography. Normal lens crystallin, soluble and insoluble, had 0.028 +/- 0.011 nanomoles Glc-Lys per nanomole crystallin monomer. Soluble and insoluble crystallins had equivalent levels of glycation. The content of Glc-Lys in normal lens crystallin increased with age in a linear fashion. Thus, the nonenzymatic glycation of nondiabetic lens crystallin may be regarded as a biological clock. The diabetic lens crystallin samples (n = 11) had a higher content of Glc-Lys (0.070 +/- 0.034 nmol/nmol monomer). Over an age range comparable to that of the control samples, the diabetic crystallin samples contained about twice as much Glc-Lys. The Glc-Lys content of the diabetic lens crystallin samples did not increase with lens age.

Full text

PDF
1742

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ansari N. H., Awasthi Y. C., Srivastava S. K. Role of glycosylation in protein disulfide formation and cataractogenesis. Exp Eye Res. 1980 Jul;31(1):9–19. doi: 10.1016/0014-4835(80)90086-x. [DOI] [PubMed] [Google Scholar]
  2. BRAUNITZER G., GEHRING-MUELLER R., HILSCHMANN N., HILSE K., HOBOM G., RUDLOFF V., WITTMANN-LIEBOLD B. [The structure of normal adult human hemoglobins]. Hoppe Seylers Z Physiol Chem. 1961 Sep 20;325:283–286. doi: 10.1515/bchm2.1961.325.1.283. [DOI] [PubMed] [Google Scholar]
  3. Bloemendal H. The vertebrate eye lens. Science. 1977 Jul 8;197(4299):127–138. doi: 10.1126/science.877544. [DOI] [PubMed] [Google Scholar]
  4. Bookchin R. M., Gallop P. M. Structure of hemoglobin AIc: nature of the N-terminal beta chain blocking group. Biochem Biophys Res Commun. 1968 Jul 11;32(1):86–93. doi: 10.1016/0006-291x(68)90430-0. [DOI] [PubMed] [Google Scholar]
  5. Brownlee M., Vlassara H., Cerami A. Measurement of glycosylated amino acids and peptides from urine of diabetic patients using affinity chromatography. Diabetes. 1980 Dec;29(12):1044–1047. doi: 10.2337/diab.29.12.1044. [DOI] [PubMed] [Google Scholar]
  6. Bunn H. F., Gabbay K. H., Gallop P. M. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science. 1978 Apr 7;200(4337):21–27. doi: 10.1126/science.635569. [DOI] [PubMed] [Google Scholar]
  7. Bunn H. F., Haney D. N., Gabbay K. H., Gallop P. M. Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c. Biochem Biophys Res Commun. 1975 Nov 3;67(1):103–109. doi: 10.1016/0006-291x(75)90289-2. [DOI] [PubMed] [Google Scholar]
  8. Bunn H. F., Haney D. N., Kamin S., Gabbay K. H., Gallop P. M. The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo. J Clin Invest. 1976 Jun;57(6):1652–1659. doi: 10.1172/JCI108436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chiou S. H., Azari P., Himmel M. E., Squire P. G. Isolation and physical characterization of bovine lens crystallins. Int J Pept Protein Res. 1979 Apr;13(4):409–417. doi: 10.1111/j.1399-3011.1979.tb01900.x. [DOI] [PubMed] [Google Scholar]
  10. Chiou S. H., Chylack L. T., Jr, Tung W. H., Bunn H. F. Nonenzymatic glycosylation of bovine lens crystallins. Effect of aging. J Biol Chem. 1981 May 25;256(10):5176–5180. [PubMed] [Google Scholar]
  11. Croft L. R. The amino acid sequence of -crystallin (fraction II) from calf lens. Biochem J. 1972 Jul;128(4):961–970. doi: 10.1042/bj1280961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Driessen H. P., Herbrink P., Bloemendal H., de Jong W. W. Primary structure of the bovine beta-crystallin Bp chain. Internal duplication and homology with gamma-crystallin. Eur J Biochem. 1981 Dec;121(1):83–91. doi: 10.1111/j.1432-1033.1981.tb06433.x. [DOI] [PubMed] [Google Scholar]
  13. Eble A. S., Thorpe S. R., Baynes J. W. Nonenzymatic glucosylation and glucose-dependent cross-linking of protein. J Biol Chem. 1983 Aug 10;258(15):9406–9412. [PubMed] [Google Scholar]
  14. Flückiger R., Winterhalter K. H. In vitro synthesis of hemoglobin AIc. FEBS Lett. 1976 Dec 1;71(2):356–360. doi: 10.1016/0014-5793(76)80969-6. [DOI] [PubMed] [Google Scholar]
  15. Gabbay K. H., Hasty K., Breslow J. L., Ellison R. C., Bunn H. F., Gallop P. M. Glycosylated hemoglobins and long-term blood glucose control in diabetes mellitus. J Clin Endocrinol Metab. 1977 May;44(5):859–864. doi: 10.1210/jcem-44-5-859. [DOI] [PubMed] [Google Scholar]
  16. Garlick R. L., Mazer J. S., Higgins P. J., Bunn H. F. Characterization of glycosylated hemoglobins. Relevance to monitoring of diabetic control and analysis of other proteins. J Clin Invest. 1983 May;71(5):1062–1072. doi: 10.1172/JCI110856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Garlick R. L., Mazer J. S. The principal site of nonenzymatic glycosylation of human serum albumin in vivo. J Biol Chem. 1983 May 25;258(10):6142–6146. [PubMed] [Google Scholar]
  18. Guthrow C. E., Morris M. A., Day J. F., Thorpe S. R., Baynes J. W. Enhanced nonenzymatic glucosylation of human serum albumin in diabetes mellitus. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4258–4261. doi: 10.1073/pnas.76.9.4258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harding J. J., Dilley K. J. Structural proteins of the mammalian lens: a review with emphasis on changes in development, aging and cataract. Exp Eye Res. 1976 Jan;22(1):1–73. doi: 10.1016/0014-4835(76)90033-6. [DOI] [PubMed] [Google Scholar]
  20. Hoenders H. J., Bloemendal H. Lens proteins and aging. J Gerontol. 1983 May;38(3):278–286. doi: 10.1093/geronj/38.3.278. [DOI] [PubMed] [Google Scholar]
  21. Holmquist W. R., Schroeder W. A. A new N-terminal blocking group involving a Schiff base in hemoglobin AIc. Biochemistry. 1966 Aug;5(8):2489–2503. doi: 10.1021/bi00872a002. [DOI] [PubMed] [Google Scholar]
  22. Horwitz J., Kabasawa I., Kinoshita J. H. Conformation of gamma-crystallins of the calf lens: effects of temperature and denaturing agents. Exp Eye Res. 1977 Aug;25(2):199–208. doi: 10.1016/0014-4835(77)90132-4. [DOI] [PubMed] [Google Scholar]
  23. Kasai K., Nakamura T., Kase N., Hiraoka T., Suzuki R., Kogure F., Shimoda S. I. Increased glycosylation of proteins from cataractous lenses in diabetes. Diabetologia. 1983 Jul;25(1):36–38. doi: 10.1007/BF00251894. [DOI] [PubMed] [Google Scholar]
  24. Koenig R. J., Blobstein S. H., Cerami A. Structure of carbohydrate of hemoglobin AIc. J Biol Chem. 1977 May 10;252(9):2992–2997. [PubMed] [Google Scholar]
  25. Koenig R. J., Peterson C. M., Jones R. L., Saudek C., Lehrman M., Cerami A. Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N Engl J Med. 1976 Aug 19;295(8):417–420. doi: 10.1056/NEJM197608192950804. [DOI] [PubMed] [Google Scholar]
  26. Kramps J. A., de Man B. M., de Jong W. W. The primary structure of the B2 chain of human alpha-crystallin. FEBS Lett. 1977 Feb 15;74(1):82–84. doi: 10.1016/0014-5793(77)80757-6. [DOI] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Li L. K. Physical and chemical changes in alpha-crystallin during maturation of lens fibers. Exp Eye Res. 1974 Apr;18(4):383–393. doi: 10.1016/0014-4835(74)90116-x. [DOI] [PubMed] [Google Scholar]
  29. Li L. K., Spector A. Circular dichroism and optical rotatory dispersion of the aggregates of purified polypeptides of alpha-crystallin. Exp Eye Res. 1974 Jul;19(1):49–57. doi: 10.1016/0014-4835(74)90071-2. [DOI] [PubMed] [Google Scholar]
  30. Li L. K., Spector A. The optical rotatory dispersion and circular dichroism of calf lens alpha-crystallin. J Biol Chem. 1967 Jul 10;242(13):3234–3236. [PubMed] [Google Scholar]
  31. Liang J. N., Chakrabarti B. Spectroscopic investigations of bovine lens crystallins. 1. Circular dichroism and intrinsic fluorescence. Biochemistry. 1982 Apr 13;21(8):1847–1852. doi: 10.1021/bi00537a022. [DOI] [PubMed] [Google Scholar]
  32. Monnier V. M., Cerami A. Non-enzymatic glycosylation and browning of proteins in diabetes. Clin Endocrinol Metab. 1982 Jul;11(2):431–452. doi: 10.1016/s0300-595x(82)80023-6. [DOI] [PubMed] [Google Scholar]
  33. Monnier V. M., Cerami A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science. 1981 Jan 30;211(4481):491–493. doi: 10.1126/science.6779377. [DOI] [PubMed] [Google Scholar]
  34. Pande A., Garner W. H., Spector A. Glucosylation of human lens protein and cataractogenesis. Biochem Biophys Res Commun. 1979 Aug 28;89(4):1260–1266. doi: 10.1016/0006-291x(79)92144-2. [DOI] [PubMed] [Google Scholar]
  35. Schachar R. A., Solin S. A. The microscopic protein structure of the lens with a theory for cataract formation as determined by Raman spectroscopy of intact bovine lenses. Invest Ophthalmol. 1975 May;14(5):380–396. [PubMed] [Google Scholar]
  36. Schnider S. L., Kohn R. R. Effects of age and diabetes mellitus on the solubility and nonenzymatic glucosylation of human skin collagen. J Clin Invest. 1981 Jun;67(6):1630–1635. doi: 10.1172/JCI110198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shapiro R., McManus M. J., Zalut C., Bunn H. F. Sites of nonenzymatic glycosylation of human hemoglobin A. J Biol Chem. 1980 Apr 10;255(7):3120–3127. [PubMed] [Google Scholar]
  38. Siezen R. J., Argos P. Structural homology of lens crystallins. III. Secondary structure estimation from circular dichroism and prediction from amino acid sequences. Biochim Biophys Acta. 1983 Oct 17;748(1):56–67. doi: 10.1016/0167-4838(83)90027-4. [DOI] [PubMed] [Google Scholar]
  39. Stevens V. J., Rouzer C. A., Monnier V. M., Cerami A. Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2918–2922. doi: 10.1073/pnas.75.6.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Werner D. A., Huang C. C., Aminoff D. Micro method for determination of borohydride with NAD+. Anal Biochem. 1973 Aug;54(2):554–560. doi: 10.1016/0003-2697(73)90387-4. [DOI] [PubMed] [Google Scholar]
  41. Wu L. N., Earle S. R., Fisher R. R. Bovine heart mitochondrial transhydrogenase catalyzes an exchange reaction between NADH and NAD+. J Biol Chem. 1981 Jul 25;256(14):7401–7408. [PubMed] [Google Scholar]
  42. de Jong W. W., Terwindt E. C., Bloemendal H. The amino acid sequence of the A chain of human alpha-crystallin. FEBS Lett. 1975 Oct 15;58(1):310–313. doi: 10.1016/0014-5793(75)80286-9. [DOI] [PubMed] [Google Scholar]
  43. van Kamp G. J., Hoenders H. J. The distribution of the soluble proteins in the calf lens. Exp Eye Res. 1973 Dec 10;17(5):417–426. doi: 10.1016/0014-4835(73)90221-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES