Abstract
The thiol-activated enzymatic outer-ring monodeiodination of iodothyronines by rat kidney microsomes at low (nanomolar) substrate concentrations shows an apparently sequential reaction mechanism and is further characterized by insensitivity to inhibition by dicoumarol, a moderate sensitivity to inhibition by propylthiouracil (Ki = 100 microM) and iopanoic acid (Ki = 0.9 mM), responsiveness to 5 mM glutathione (GSH), and a thermal activation profile that is concave downward with a Td of approximately 20 degrees C. In contrast, the activity at high (micromolar) substrate concentrations shows a ping-pong reaction mechanism, is inhibited by micromolar concentrations of propylthiouracil, iopanoic acid and dicoumarol, is unresponsive to 5 mM GSH, and shows a concave upward thermal activation profile. Analysis of the microsomal deiodinase reaction over a wide range of 3,3',5'-triiodothyronine (rT3) concentrations (0.1 nM to 10 microM) suggested the presence of two enzymatic activities, with apparent Michaelis constants (Km) of 0.5 microM and 2.5 nM. Lineweaver-Burk plots of reaction velocities at nanomolar substrate concentrations in presence of 100 microM propylthiouracil also revealed an operationally distinct enzymatic activity with Km's of 2.5 and 0.63 nM and maximum velocities (Vmax's) of 16 and 0.58 pmol/mg protein per h for rT3 and thyroxine (T4), respectively. These findings are consistent with the presence of a low Km iodothyronine 5'-deiodinase in rat kidney microsomes distinct from the well characterized high Km enzyme and suggest that at circulating levels of free T4 the postulated low Km enzyme could be physiologically important.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams G. M., Larsen P. R. Triiodothyronine and thyroxine in the serum and thyroid glands of iodine-deficient rats. J Clin Invest. 1973 Oct;52(10):2522–2531. doi: 10.1172/JCI107443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim Biophys Acta. 1963 Feb 12;67:173–187. doi: 10.1016/0006-3002(63)91815-8. [DOI] [PubMed] [Google Scholar]
- Chopra I. J., Solomon D. H., Chopra U., Wu S. Y., Fisher D. A., Nakamura Y. Pathways of metabolism of thyroid hormones. Recent Prog Horm Res. 1978;34:521–567. doi: 10.1016/b978-0-12-571134-0.50018-1. [DOI] [PubMed] [Google Scholar]
- Chopra I. J., Wu S. Y., Nakamura Y., Solomon D. H. Monodeiodination of 3,5,3'-triiodothyronine and 3,3',5'-triiodothyronine to 3,3'-diiodothyronine in vitro. Endocrinology. 1978 Apr;102(4):1099–1106. doi: 10.1210/endo-102-4-1099. [DOI] [PubMed] [Google Scholar]
- Dixon H. B., Tipton K. F. Negatively co-operative ligand binding. Biochem J. 1973 Aug;133(4):837–842. doi: 10.1042/bj1330837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRIEDEN C. TREATMENT OF ENZYME KINETIC DATA. I. THE EFFECT OF MODIFIERS ON THE KINETIC PARAMETERS OF SINGLE SUBSTRATE ENZYMERS. J Biol Chem. 1964 Oct;239:3522–3531. [PubMed] [Google Scholar]
- Fekkes D., Hennemann G., Visser T. J. One enzyme for the 5'-deiodination of 3,3',5'-triiodothyronine and 3',5'-diiodothyronine in rat liver. Biochem Pharmacol. 1982 May 1;31(9):1705–1709. doi: 10.1016/0006-2952(82)90672-4. [DOI] [PubMed] [Google Scholar]
- Fekkes D., van Overmeeren E., Hennemann G., Visser T. J. Solubilization and partial characterization of rat liver iodothyronine deiodinases. Biochim Biophys Acta. 1980;613(1):41–51. doi: 10.1016/0005-2744(80)90190-4. [DOI] [PubMed] [Google Scholar]
- Goswami A., Leonard J. L., Rosenberg I. N. Inhibition by coumadin anticoagulants of enzymatic outer ring monodeiodination of iodothyronines. Biochem Biophys Res Commun. 1982 Feb 26;104(4):1231–1238. doi: 10.1016/0006-291x(82)91382-1. [DOI] [PubMed] [Google Scholar]
- Goswami A., Rosenberg I. N. Stimulation of iodothyronine outer ring monodeiodinase by dihydrolipoamide. Endocrinology. 1983 Apr;112(4):1180–1187. doi: 10.1210/endo-112-4-1180. [DOI] [PubMed] [Google Scholar]
- Leonard J. L., Mellen S. A., Larsen P. R. Thyroxine 5'-deiodinase activity in brown adipose tissue. Endocrinology. 1983 Mar;112(3):1153–1155. doi: 10.1210/endo-112-3-1153. [DOI] [PubMed] [Google Scholar]
- Leonard J. L., Rosenberg I. N. Characterization of essential enzyme sulfhydryl groups of thyroxine 5'-deiodinase from rat kidney. Endocrinology. 1980 Feb;106(2):444–451. doi: 10.1210/endo-106-2-444. [DOI] [PubMed] [Google Scholar]
- Leonard J. L., Rosenberg I. N. Iodothyronine 5'-deiodinase from rat kidney: substrate specificity and the 5'-deiodination of reverse triiodothyronine. Endocrinology. 1980 Nov;107(5):1376–1383. doi: 10.1210/endo-107-5-1376. [DOI] [PubMed] [Google Scholar]
- Leonard J. L., Rosenberg I. N. Solubilization of a phospholipid-requiring enzyme, iodothyronine 5'-deiodinase, from rat kidney membranes. Biochim Biophys Acta. 1981 May 14;659(1):205–218. doi: 10.1016/0005-2744(81)90285-0. [DOI] [PubMed] [Google Scholar]
- REED L. J., KOIKE M., LEVITCH M. E., LEACH F. R. Studies on the nature and reactions of protein-bound lipoic acid. J Biol Chem. 1958 May;232(1):143–158. [PubMed] [Google Scholar]
- Refetoff S., Robin N. I., Fang V. S. Parameters of thyroid function in serum of 16 selected vertebrate species: a study of PBI, serum T4, free T4, and the pattern of T4 and T3 binding to serum proteins. Endocrinology. 1970 Apr;86(4):793–805. doi: 10.1210/endo-86-4-793. [DOI] [PubMed] [Google Scholar]
- Rudolph F. B., Fromm H. J. Plotting methods for analyzing enzyme rate data. Methods Enzymol. 1979;63:138–159. doi: 10.1016/0076-6879(79)63009-4. [DOI] [PubMed] [Google Scholar]
- Silva J. E., Leonard J. L., Crantz F. R., Larsen P. R. Evidence for two tissue-specific pathways for in vivo thyroxine 5'-deiodination in the rat. J Clin Invest. 1982 May;69(5):1176–1184. doi: 10.1172/JCI110554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver M. Thin-layer chromatography of lipoic acid, lipoamide, and their persulfides. Methods Enzymol. 1979;62:135–137. doi: 10.1016/0076-6879(79)62208-5. [DOI] [PubMed] [Google Scholar]
- Visser T. J., Fekkes D., Docter R., Hennemann G. Sequential deiodination of thyroxine in rat liver homogenate. Biochem J. 1978 Jul 15;174(1):221–229. doi: 10.1042/bj1740221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser T. J., Kaplan M. M., Leonard J. L., Larsen P. R. Evidence for two pathways of iodothyronine 5'-deiodination in rat pituitary that differ in kinetics, propylthiouracil sensitivity, and response to hypothyroidism. J Clin Invest. 1983 Apr;71(4):992–1002. doi: 10.1172/JCI110854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser T. J., Leonard J. L., Kaplan M. M., Larsen P. R. Kinetic evidence suggesting two mechanisms for iodothyronine 5'-deiodination in rat cerebral cortex. Proc Natl Acad Sci U S A. 1982 Aug;79(16):5080–5084. doi: 10.1073/pnas.79.16.5080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Visser T. J. Mechanism of action of iodothyronine-5'-deiodinase. Biochim Biophys Acta. 1979 Aug 15;569(2):302–308. doi: 10.1016/0005-2744(79)90066-4. [DOI] [PubMed] [Google Scholar]
