Abstract
To assess the direct and indirect effects of the commonly used calcium entry blockers (CEB) upon the major determinants of isovolumic left ventricular relaxation, we administered equidepressant intracoronary (IC, n = 7) and equihypotensive intravenous (n = 12) dosages of diltiazem (16 +/- 3 SE micrograms/kg IC and 63 +/- 9 micrograms/kg i.v.), verapamil (10 +/- 2 and 57 +/- 5 micrograms/kg), and nifedipine (1 +/- 0.1 and 8 +/- 0.3 micrograms/kg) to preinstrumented awake dogs with normal ventricular function. The time constant of left ventricle (LV) relaxation, analyzed by two methods (T1, from the linear relation of the natural logarithm of LV pressure and time; T2, from the linear relation of LV pressure and negative high fidelity LV pressure), was significantly and equivalently prolonged by IC diltiazem (T1 + 48%, P less than 0.02), verapamil (T1 + 43%, P less than 0.001), and nifedipine (T1 + 30%, P less than 0.03). Lesser amounts of each CEB that did not affect rate of LV pressure development or extent of shortening produced no change in T1 or T2. By contrast, intravenous calcium entry blockade either produced no significant change (diltiazem and verapamil) or shortened (nifedipine T1 - 18%, P less than 0.01) LV isovolumic relaxation. However, after beta adrenergic blockade with propranolol (2 mg/kg i.v., n = 6) no change in ventricular relaxation was observed during nifedipine and the time constant was significantly prolonged by verapamil (T1 + 15%, P less than 0.05). We conclude that calcium entry blockade directly impairs normal left ventricular relaxation: This effect is closely linked to the negative inotropic properties of these drugs. The prolongation of isovolumic relaxation produced by calcium blockade is attenuated or even reversed by reflex sympathetic stimulation and favorably altered loading conditions during systemic administration.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonow R. O., Leon M. B., Rosing D. R., Kent K. M., Lipson L. C., Bacharach S. L., Green M. V., Epstein S. E. Effects of verapamil and propranolol on left ventricular systolic function and diastolic filling in patients with coronary artery disease: radionuclide angiographic studies at rest and during exercise. Circulation. 1982 Jun;65(7):1337–1350. doi: 10.1161/01.cir.65.7.1337. [DOI] [PubMed] [Google Scholar]
- Bourdillon P. D., Lorell B. H., Mirsky I., Paulus W. J., Wynne J., Grossman W. Increased regional myocardial stiffness of the left ventricle during pacing-induced angina in man. Circulation. 1983 Feb;67(2):316–323. doi: 10.1161/01.cir.67.2.316. [DOI] [PubMed] [Google Scholar]
- Brutsaert D. L., Housmans P. R., Goethals M. A. Dual control of relaxation. Its role in the ventricular function in the mammalian heart. Circ Res. 1980 Nov;47(5):637–652. doi: 10.1161/01.res.47.5.637. [DOI] [PubMed] [Google Scholar]
- Brutsaert D. L., Rademakers F. E., Sys S. U. Triple control of relaxation: implications in cardiac disease. Circulation. 1984 Jan;69(1):190–196. doi: 10.1161/01.cir.69.1.190. [DOI] [PubMed] [Google Scholar]
- Brutsaert D. L., de Clerck N. M., Goethals M. A., Housmans P. R. Relaxation of ventricular cardiac muscle. J Physiol. 1978 Oct;283:469–480. doi: 10.1113/jphysiol.1978.sp012513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carroll J. D., Hess O. M., Hirzel H. O., Krayenbuehl H. P. Exercise-induced ischemia: the influence of altered relaxation on early diastolic pressures. Circulation. 1983 Mar;67(3):521–528. doi: 10.1161/01.cir.67.3.521. [DOI] [PubMed] [Google Scholar]
- Ellrodt G., Chew C. Y., Singh B. N. Therapeutic implications of slow-channel blockade in cardiocirculatory disorders. Circulation. 1980 Oct;62(4):669–679. doi: 10.1161/01.cir.62.4.669. [DOI] [PubMed] [Google Scholar]
- Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1977;17:149–166. doi: 10.1146/annurev.pa.17.040177.001053. [DOI] [PubMed] [Google Scholar]
- Henry P. D. Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. Am J Cardiol. 1980 Dec 1;46(6):1047–1058. doi: 10.1016/0002-9149(80)90366-5. [DOI] [PubMed] [Google Scholar]
- Henry P. D., Schuchleib R., Davis J., Weiss E. S., Sobel B. E. Myocardial contracture and accumulation of mitochondrial calcium in ischemic rabbit heart. Am J Physiol. 1977 Dec;233(6):H677–H684. doi: 10.1152/ajpheart.1977.233.6.H677. [DOI] [PubMed] [Google Scholar]
- Horwitz L. D., Bishop V. S., Stone H. L., Stegall H. F. Continuous measurement of internal left ventricular diameter. J Appl Physiol. 1968 May;24(5):738–740. doi: 10.1152/jappl.1968.24.5.738. [DOI] [PubMed] [Google Scholar]
- Karliner J. S., LeWinter M. M., Mahler F., Engler R., O'Rourke R. A. Pharmacologic and hemodynamic influences on the rate of isovolumic left ventricular relaxation in the normal conscious dog. J Clin Invest. 1977 Sep;60(3):511–521. doi: 10.1172/JCI108803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz A. M. Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamines: an historical review. Adv Cyclic Nucleotide Res. 1979;11:303–343. [PubMed] [Google Scholar]
- Kumada T., Karliner J. S., Pouleur H., Gallagher K. P., Shirato K., Ross J., Jr Effects of coronary occlusion on early ventricular diastolic events in conscious dogs. Am J Physiol. 1979 Nov;237(5):H542–H549. doi: 10.1152/ajpheart.1979.237.5.H542. [DOI] [PubMed] [Google Scholar]
- Lorell B. H., Barry W. H. Effects of verapamil on contraction and relaxation of cultured chick embryo ventricular cells during calcium overload. J Am Coll Cardiol. 1984 Feb;3(2 Pt 1):341–348. doi: 10.1016/s0735-1097(84)80018-2. [DOI] [PubMed] [Google Scholar]
- Lorell B. H., Turi Z., Grossman W. Modification of left ventricular response to pacing tachycardia in nifedipine in patients with coronary artery disease. Am J Med. 1981 Oct;71(4):667–675. doi: 10.1016/0002-9343(81)90237-0. [DOI] [PubMed] [Google Scholar]
- Martin G., Gimeno J. V., Cosin J., Guillem M. I. Time constant of isovolumic pressure fall: new numerical approaches and significance. Am J Physiol. 1984 Aug;247(2 Pt 2):H283–H294. doi: 10.1152/ajpheart.1984.247.2.H283. [DOI] [PubMed] [Google Scholar]
- Mirsky I. Assessment of diastolic function: suggested methods and future considerations. Circulation. 1984 Apr;69(4):836–841. doi: 10.1161/01.cir.69.4.836. [DOI] [PubMed] [Google Scholar]
- Morad M., Rolett E. L. Relaxing effects of catecholamines on mammalian heart. J Physiol. 1972 Aug;224(3):537–558. doi: 10.1113/jphysiol.1972.sp009912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakaya H., Schwartz A., Millard R. W. Reflex chronotropic and inotropic effects of calcium channel-blocking agents in conscious dogs. Diltiazem, verapamil, and nifedipine compared. Circ Res. 1983 Mar;52(3):302–311. doi: 10.1161/01.res.52.3.302. [DOI] [PubMed] [Google Scholar]
- Newman R. K., Bishop V. S., Peterson D. F., Leroux E. J., Horwitz L. D. Effect of verapamil on left ventricular performance in conscious dogs. J Pharmacol Exp Ther. 1977 Jun;201(3):723–730. [PubMed] [Google Scholar]
- Parmley W. W., Sonnenblick E. H. Relation between mechanics of contraction and relaxation in mammalian cardiac muscle. Am J Physiol. 1969 May;216(5):1084–1091. doi: 10.1152/ajplegacy.1969.216.5.1084. [DOI] [PubMed] [Google Scholar]
- Paulus W. J., Lorell B. H., Craig W. E., Wynne J., Murgo J. P., Grossman W. Comparison of the effects of nitroprusside and nifedipine on diastolic properties in patients with hypertrophic cardiomyopathy: altered left ventricular loading or improved muscle inactivation? J Am Coll Cardiol. 1983 Nov;2(5):879–886. doi: 10.1016/s0735-1097(83)80235-6. [DOI] [PubMed] [Google Scholar]
- Petru M. A., Crawford M. H., Sorensen S. G., Chaudhuri T. K., Levine S., O'Rourke R. A. Short- and long-term efficacy of high-dose oral diltiazem for angina due to coronary artery disease: a placebo-controlled, randomized, double-blind crossover study. Circulation. 1983 Jul;68(1):139–147. doi: 10.1161/01.cir.68.1.139. [DOI] [PubMed] [Google Scholar]
- Porter C. B., Walsh R. A., Badke F. R., O'Rourke R. A. Differential effects of diltiazem and nitroprusside on left ventricular function in experimental chronic volume overload. Circulation. 1983 Sep;68(3):685–692. doi: 10.1161/01.cir.68.3.685. [DOI] [PubMed] [Google Scholar]
- Raff G. L., Glantz S. A. Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-dependent relaxation in the intact dog heart. Circ Res. 1981 Jun;48(6 Pt 1):813–824. doi: 10.1161/01.res.48.6.813. [DOI] [PubMed] [Google Scholar]
- Serruys P. W., Brower R. W., ten Katen H. J., Bom A. H., Hugenholtz P. G. Regional wall motion from radiopaque markers after intravenous and intracoronary injections of nifedipine. Circulation. 1981 Mar;63(3):584–591. doi: 10.1161/01.cir.63.3.584. [DOI] [PubMed] [Google Scholar]
- Tada M., Yamamoto T., Tonomura Y. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev. 1978 Jan;58(1):1–79. doi: 10.1152/physrev.1978.58.1.1. [DOI] [PubMed] [Google Scholar]
- Theroux P., Franklin D., Ross J., Jr, Kemper W. S. Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circ Res. 1974 Dec;35(6):896–908. doi: 10.1161/01.res.35.6.896. [DOI] [PubMed] [Google Scholar]
- Theroux P., Ross J., Jr, Franklin D., Kemper W. S., Sasyama S. Regional Myocardial function in the conscious dog during acute coronary occlusion and responses to morphine, propranolol, nitroglycerin, and lidocaine. Circulation. 1976 Feb;53(2):302–314. doi: 10.1161/01.cir.53.2.302. [DOI] [PubMed] [Google Scholar]
- Walsh R. A., Badke F. R., O'Rourke R. A. Differential effects of systemic and intracoronary calcium channel blocking agents on global and regional left ventricular function in conscious dogs. Am Heart J. 1981 Sep;102(3 Pt 1):341–350. doi: 10.1016/0002-8703(81)90307-0. [DOI] [PubMed] [Google Scholar]
- Walsh R. A., Horwitz L. D. Adverse hemodynamic effects of intravenous disopyramide compared with quinidine in conscious dogs. Circulation. 1979 Nov;60(5):1053–1058. doi: 10.1161/01.cir.60.5.1053. [DOI] [PubMed] [Google Scholar]
- Weisfeldt M. L., Scully H. E., Frederiksen J., Rubenstein J. J., Pohost G. M., Beierholm E., Bello A. G., Daggett W. M. Hemodynamic determinants of maximum negative dP-dt and periods of diastole. Am J Physiol. 1974 Sep;227(3):613–621. doi: 10.1152/ajplegacy.1974.227.3.613. [DOI] [PubMed] [Google Scholar]
- Weisfeldt M. L., Weiss J. L., Frederiksen J. T., Yin F. C. Quantification of incomplete left ventricular relaxation: relationship to the time constant for isovolumic pressure fall. Eur Heart J. 1980;Suppl A:119–129. doi: 10.1093/eurheartj/1.suppl_1.119. [DOI] [PubMed] [Google Scholar]
- Weiss J. L., Frederiksen J. W., Weisfeldt M. L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest. 1976 Sep;58(3):751–760. doi: 10.1172/JCI108522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Gende A. O., Alzueta D. P., Cingolani H. E. Effect of isoproterenol on relation between maximal rate of contraction and maximal rate of relaxation. Am J Physiol. 1977 Sep;233(3):H404–H409. doi: 10.1152/ajpheart.1977.233.3.H404. [DOI] [PubMed] [Google Scholar]
