Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 May;75(5):1477–1487. doi: 10.1172/JCI111851

Mechanism of preservation of glomerular perfusion and filtration during acute extracellular fluid volume depletion. Importance of intrarenal vasopressin-prostaglandin interaction for protecting kidneys from constrictor action of vasopressin.

A Yared 1, V Kon 1, I Ichikawa 1
PMCID: PMC425486  PMID: 3998146

Abstract

Glomerular circulatory dynamics were assessed in 60 adult anesthetized rats, which were either deprived or not deprived of water for 24-48 h. Water-deprived rats (n = 21) were characterized by a depressed level of single nephron glomerular filtration rate (SNGFR) when compared with nonwater-deprived controls (n = 8) (23.2 +/- 1.3 vs. 44.8 +/- 4.1 nl/min). This was primarily due to decreased glomerular plasma flow rate (71 +/- 5 vs. 169 +/- 23 nl/min) and glomerular capillary ultrafiltration coefficient (0.028 +/- 0.003 vs. 0.087 +/- 0.011 nl/[s . mmHg]). Infusion of saralasin to these water-deprived rats resulted in significant increases in plasma flow rate and ultrafiltration coefficient, and decline in arteriolar resistances. Consequently, SNGFR increased by approximately 50% from pre-saralasin levels. When water-deprived saralasin-treated rats were given a specific antagonist to the vascular action of arginine vasopressin (AVP), d(CH2)5Tyr(Me)AVP, a fall in systemic blood pressure occurred, on average from 102 +/- 5 to 80 +/- 5 mmHg, unaccompanied by dilation of renal arterioles, so that both plasma flow rate (129 +/- 8 vs. 85 +/- 13 nl/min) and SNGFR (31.0 +/- 2.9 vs. 18.2 +/- 4.4 nl/min) decreased. This more selective extrarenal constrictor action of AVP was further documented in additional studies in which cardiac output and whole kidney blood flow rate were simultaneously measured. In water-diuretic rats, administration of a moderately pressor dose of AVP (4 mU/kg per min) resulted in a significant rise in kidney blood flow rate (from 8.8 +/- 1.2 to 9.6 +/- 1.3 ml/min). The higher kidney blood flow rate occurred despite a fall in cardiac output (from 111 +/- 7 to 98 +/- 9 ml/min), and was associated with a significant increase in the ratio of systemic vascular to renal vascular resistance (on average from 0.083 +/- 0.014 to 0.106 +/- 0.019). Furthermore, infusion of d(CH2)5Tyr(Me)AVP to water-deprived animals (n = 6) to antagonize endogenous AVP resulted in systemic but not renal vasodilation, so that kidney blood flow rate fell (by approximately 30%), as did systemic-to-renal resistance ratio (by approximately 30%). When the above two experiments were repeated in indomethacin-treated animals, exogenous AVP administration in water-diuretic rats (n = 6) and antagonism of endogenous AVP in water-deprived rats (n = 7) caused, respectively, parallel constriction and dilation in systemic and renal vasculatures. The net effect was unaltered systemic to renal vascular resistance ratio in both cases. These results indicate that (1) unlike angiotensin II, AVP maintains glomerular perfusion and filtration in acute extracellular fluid volume depletion by a more selective constriction of the extrarenal vasculature. (2) The relative renal insensitivity to the vasoconstrictor action of AVP appears to be due to an AVP-induced release of a potent renal vasodilator, sensitive to indomethacin, presumably prostaglandins.

Full text

PDF
1477

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABLAD B. A study of the mechanism of the hemodynamic effects of hydralazine in man. Acta Pharmacol Toxicol (Copenh) 1963;20(Suppl 1):1–53. [PubMed] [Google Scholar]
  2. Aisenbrey G. A., Handelman W. A., Arnold P., Manning M., Schrier R. W. Vascular effects of arginine vasopressin during fluid deprivation in the rat. J Clin Invest. 1981 Apr;67(4):961–968. doi: 10.1172/JCI110146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andrews C. E., Jr, Brenner B. M. Relative contributions of arginine vasopressin and angiotensin II to maintenance of systemic arterial pressure in the anesthetized water-deprived rat. Circ Res. 1981 Feb;48(2):254–258. doi: 10.1161/01.res.48.2.254. [DOI] [PubMed] [Google Scholar]
  4. Arendshorst W. J., Finn W. F., Gottschalk C. W. Autoregulation of blood flow in the rat kidney. Am J Physiol. 1975 Jan;228(1):127–133. doi: 10.1152/ajplegacy.1975.228.1.127. [DOI] [PubMed] [Google Scholar]
  5. Ausiello D. A., Kreisberg J. I., Roy C., Karnovsky M. J. Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin. J Clin Invest. 1980 Mar;65(3):754–760. doi: 10.1172/JCI109723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beck N. P., Kaneko T., Zor U., Field J. B., Davis B. B. Effects of vasopressin and prostaglandin E 1 on the adenyl cyclase-cyclic 3',5'-adenosine monophosphate system of the renal medulla of the rat. J Clin Invest. 1971 Dec;50(12):2461–2465. doi: 10.1172/JCI106746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beck T. R., Hassid A., Dunn M. J. The effect of arginine vasopressin and its analogs on the synthesis of prostaglandin E2 by rat renal medullary interstitial cells in culture. J Pharmacol Exp Ther. 1980 Oct;215(1):15–19. [PubMed] [Google Scholar]
  8. Cowley A. W., Jr, Quillen E. Q., Jr, Skelton M. M. Role of vasopressin in cardiovascular regulation. Fed Proc. 1983 Dec;42(15):3170–3176. [PubMed] [Google Scholar]
  9. Danon A., Chang L. C., Sweetman B. J., Nies A. S., Oates J. A. Synthesis of prostaglandins by the rat renal papilla in vitro. Mechanism of stimulation by angiotensin II. Biochim Biophys Acta. 1975 Apr 18;388(1):71–83. doi: 10.1016/0005-2760(75)90063-6. [DOI] [PubMed] [Google Scholar]
  10. Deen W. M., Troy J. L., Robertson C. R., Brenner B. M. Dynamics of glomerular ultrafiltration in the rat. IV. Determination of the ultrafiltration coefficient. J Clin Invest. 1973 Jun;52(6):1500–1508. doi: 10.1172/JCI107324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dunn M. J., Greely H. P., Valtin H., Kintner L. B., Beeuwkes R., 3rd Renal excretion of prostaglandins E2 and F2alpha in diabetes insipidus rats. Am J Physiol. 1978 Dec;235(6):E624–E627. doi: 10.1152/ajpendo.1978.235.6.E624. [DOI] [PubMed] [Google Scholar]
  12. FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
  13. Grantham J. J., Orloff J. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3',5'-monophosphate, and theophylline. J Clin Invest. 1968 May;47(5):1154–1161. doi: 10.1172/JCI105804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Handler J. S. Vasopressin-prostaglandin interactions in the regulation of epithelial cell permeability to water. Kidney Int. 1981 Jun;19(6):831–838. doi: 10.1038/ki.1981.87. [DOI] [PubMed] [Google Scholar]
  15. Heyndrickx G. R., Boettcher D. H., Vatner S. F. Effects of angiotensin, vasopressin, and methoxamine on cardiac function and blood flow distribution in conscious dogs. Am J Physiol. 1976 Nov;231(5 Pt 1):1579–1587. doi: 10.1152/ajplegacy.1976.231.5.1579. [DOI] [PubMed] [Google Scholar]
  16. Huang W. C., Ploth D. W., Navar L. G. Angiotensin-mediated alterations in nephron function in Goldblatt hypertensive rats. Am J Physiol. 1982 Dec;243(6):F553–F560. doi: 10.1152/ajprenal.1982.243.6.F553. [DOI] [PubMed] [Google Scholar]
  17. Ichikawa I., Brenner B. M. Evidence for glomerular actions of ADH and dibutyryl cyclic AMP in the rat. Am J Physiol. 1977 Aug;233(2):F102–F117. doi: 10.1152/ajprenal.1977.233.2.F102. [DOI] [PubMed] [Google Scholar]
  18. Ichikawa I., Ferrone R. A., Duchin K. L., Manning M., Dzau V. J., Brenner B. M. Relative contribution of vasopressin and angiotensin II to the altered renal microcirculatory dynamics in two-kidney Goldblatt hypertension. Circ Res. 1983 Nov;53(5):592–602. doi: 10.1161/01.res.53.5.592. [DOI] [PubMed] [Google Scholar]
  19. Kruszynski M., Lammek B., Manning M., Seto J., Haldar J., Sawyer W. H. [1-beta-Mercapto-beta,beta-cyclopentamethylenepropionic acid),2-(O-methyl)tyrosine ]argine-vasopressin and [1-beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)]argine-vasopressine, two highly potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem. 1980 Apr;23(4):364–368. doi: 10.1021/jm00178a003. [DOI] [PubMed] [Google Scholar]
  20. Liard J. F., Dériaz O., Schelling P., Thibonnier M. Cardiac output distribution during vasopressin infusion or dehydration in conscious dogs. Am J Physiol. 1982 Nov;243(5):H663–H669. doi: 10.1152/ajpheart.1982.243.5.H663. [DOI] [PubMed] [Google Scholar]
  21. Lowbridge J., Manning M., Haldar J., Sawyer W. H. [1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid),4-valine,-8-D-arginine]vasopressin, a potent and selective inhibitor of the vasopressor response to arginine-vasopressin. J Med Chem. 1978 Mar;21(3):313–315. doi: 10.1021/jm00201a019. [DOI] [PubMed] [Google Scholar]
  22. Lum G. M., Aisenbrey G. A., Dunn M. J., Berl T., Schrier R. W., McDonald K. M. In vivo effect of indomethacin to potentiate the renal medullary cyclic AMP response to vasopressin. J Clin Invest. 1977 Jan;59(1):8–13. doi: 10.1172/JCI108624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Manning M., Lowbridge J., Stier C. T., Jr, Haldar J., Sawyer W. H. [1-deaminopenicillamine,4-valine]-8-D-arginine-vasopressin, a highly potent inhibitor of the vasopressor response to arginine-vasopressin. J Med Chem. 1977 Sep;20(9):1228–1230. doi: 10.1021/jm00219a026. [DOI] [PubMed] [Google Scholar]
  24. Marumo F., Edelman I. S. Effects of Ca++ and prostaglandin E1 on vasopressin activation of renal adenyl cyclase. J Clin Invest. 1971 Aug;50(8):1613–1620. doi: 10.1172/JCI106649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Möhring J., Möhring B., Petri M., Haack D. Plasma vasopressin concentrations and effects of vasopressin antiserum on blood pressure in rats with malignant two-kidney Goldblatt hypertension. Circ Res. 1978 Jan;42(1):17–22. doi: 10.1161/01.res.42.1.17. [DOI] [PubMed] [Google Scholar]
  26. ORLOFF J., HANDLER J. S., BERGSTROM S. EFFECT OF PROSTAGLANDIN (PGE-1) ON THE PERMEABILITY RESPONSE OF TOAD BLADDER TO VASOPRESSIN, THEOPHYLLINE AND ADENOSINE 3',5'-MONOPHOSPHATE. Nature. 1965 Jan 23;205:397–398. doi: 10.1038/205397a0. [DOI] [PubMed] [Google Scholar]
  27. Oliver J. A., Sciacca R. R., Le Cren G., Cannon P. J. Modulation by prostaglandins of the renal vascular action of arginine vasopressin. Prostaglandins. 1982 Nov;24(5):641–656. doi: 10.1016/0090-6980(82)90034-x. [DOI] [PubMed] [Google Scholar]
  28. Omachi R. S., Robbie D. E., Handler J. S., Orloff J. Effects of ADH and other agents on cyclic AMP accumulation in toad bladder epithelium. Am J Physiol. 1974 May;226(5):1152–1157. doi: 10.1152/ajplegacy.1974.226.5.1152. [DOI] [PubMed] [Google Scholar]
  29. Paller M. S., Linas S. L. Role of angiotensin II, alpha-adrenergic system, and arginine vasopressin on arterial pressure in rat. Am J Physiol. 1984 Jan;246(1 Pt 2):H25–H30. doi: 10.1152/ajpheart.1984.246.1.H25. [DOI] [PubMed] [Google Scholar]
  30. Ploth D. W. Angiotensin-dependent renal mechanisms in two-kidney, one-clip renal vascular hypertension. Am J Physiol. 1983 Aug;245(2):F131–F141. doi: 10.1152/ajprenal.1983.245.2.F131. [DOI] [PubMed] [Google Scholar]
  31. Robertson C. R., Deen W. M., Troy J. L., Brenner B. M. Dynamics of glomerular ultrafiltration in the rat. 3. Hemodynamics and autoregulation. Am J Physiol. 1972 Nov;223(5):1191–1200. doi: 10.1152/ajplegacy.1972.223.5.1191. [DOI] [PubMed] [Google Scholar]
  32. Scharschmidt L. A., Dunn M. J. Prostaglandin synthesis by rat glomerular mesangial cells in culture. Effects of angiotensin II and arginine vasopressin. J Clin Invest. 1983 Jun;71(6):1756–1764. doi: 10.1172/JCI110931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schmid P. G., Abboud F. M., Wendling M. G., Ramberg E. S., Mark A. L., Heistad D. D., Eckstein J. W. Regional vascular effects of vasopressin: plasma levels and circulatory responses. Am J Physiol. 1974 Nov;227(5):998–1004. doi: 10.1152/ajplegacy.1974.227.5.998. [DOI] [PubMed] [Google Scholar]
  34. Schor N., Ichikawa I., Brenner B. M. Glomerular adaptations to chronic dietary salt restriction or excess. Am J Physiol. 1980 May;238(5):F428–F436. doi: 10.1152/ajprenal.1980.238.5.F428. [DOI] [PubMed] [Google Scholar]
  35. Sraer J., Foidart J., Chansel D., Mahieu P., Ardaillou R. Prostaglandin synthesis by rat isolated glomeruli and glomerular cultured cells. Int J Biochem. 1980;12(1-2):203–207. doi: 10.1016/0020-711x(80)90070-1. [DOI] [PubMed] [Google Scholar]
  36. Sraer J., Siess W., Moulonguet-Doleris L., Oudinet J. P., Dray F., Ardaillou R. In vitro prostaglandin synthesis by various rat renal preparations. Biochim Biophys Acta. 1982 Jan 15;710(1):45–52. doi: 10.1016/0005-2760(82)90188-6. [DOI] [PubMed] [Google Scholar]
  37. Steiner R. W., Tucker B. J., Blantz R. C. Glomerular hemodynamics in rats with chronic sodium depletion. Effect of saralasin. J Clin Invest. 1979 Aug;64(2):503–512. doi: 10.1172/JCI109488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tucker B. J., Blantz R. C. Mechanism of altered glomerular hemodynamics during chronic sodium depletion. Am J Physiol. 1983 Jan;244(1):F11–F18. doi: 10.1152/ajprenal.1983.244.1.F11. [DOI] [PubMed] [Google Scholar]
  39. Tucker B. J., Peterson O. W., Ziegler M. G., Blantz R. C. Analysis of adrenergic effects of the anesthetics Inactin and alpha-chloralose. Am J Physiol. 1982 Sep;243(3):F253–F259. doi: 10.1152/ajprenal.1982.243.3.F253. [DOI] [PubMed] [Google Scholar]
  40. Viets J. W., Deen W. M., Troy J. L., Brenner B. M. Determination of serum protein concentration in nanoliter blood samples using fluorescamine or 9-phthalaldehyde. Anal Biochem. 1978 Aug 1;88(2):513–521. doi: 10.1016/0003-2697(78)90451-7. [DOI] [PubMed] [Google Scholar]
  41. Walker L. A., Whorton A. R., Smigel M., France R., Frölich J. C. Antidiuretic hormone increases renal prostaglandin synthesis in vivo. Am J Physiol. 1978 Sep;235(3):F180–F185. doi: 10.1152/ajprenal.1978.235.3.F180. [DOI] [PubMed] [Google Scholar]
  42. Zimpfer M., Manders W. T., Barger A. C., Vatner S. F. Pentobarbital alters compensatory neural and humoral mechanisms in response to hemorrhage. Am J Physiol. 1982 Nov;243(5):H713–H721. doi: 10.1152/ajpheart.1982.243.5.H713. [DOI] [PubMed] [Google Scholar]
  43. Zipser R. D., Myers S. I., Needleman P. Stimulation of renal prostaglandin synthesis by the pressor activity of vasopressin. Endocrinology. 1981 Feb;108(2):495–499. doi: 10.1210/endo-108-2-495. [DOI] [PubMed] [Google Scholar]
  44. Zusman R. M., Keiser H. R. Prostaglandin biosynthesis by rabbit renomedullary interstitial cells in tissue culture. Stimulation by angiotensin II, bradykinin, and arginine vasopressin. J Clin Invest. 1977 Jul;60(1):215–223. doi: 10.1172/JCI108758. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES