Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 May;75(5):1632–1637. doi: 10.1172/JCI111870

Alpha thalassemia changes erythrocyte heterogeneity in sickle cell disease.

C T Noguchi, G J Dover, G P Rodgers, G R Serjeant, S E Antonarakis, N P Anagnou, D R Higgs, D J Weatherall, A N Schechter
PMCID: PMC425505  PMID: 2581999

Abstract

Homozygous alpha-thalassemia has the beneficial effect in sickle cell anemia of reducing the hemolytic severity while changing several other hematological parameters. We examined in detail the cellular basis of some of these hematologic alterations. We find that the broad distribution in erythrocyte density and the large proportion of dense cells associated with sickle cell anemia are both reduced with coexisting alpha-thalassemia. Measurements of glycosylated hemoglobin levels as a function of cell density indicate that the accelerated increase in cell density, beyond normal cell aging, in sickle cell anemia is also reduced with alpha-thalassemia. The patients with homozygous alpha-thalassemia and sickle cell disease have slightly lower levels of hemoglobin F than the nonthalassemic sickle cell patients. Examination of hemoglobin F production revealed that the proportion of hemoglobin F containing reticulocytes remained unchanged, as did the proportion of hemoglobin F in cells containing hemoglobin F (F cells). Preferential survival of F cells occurs in sickle cell anemia, with or without alpha-thalassemia, and the slight difference in hemoglobin F levels appear to reflect differences in numbers of circulating F cells. Thus, in sickle cell disease with coexisting alpha-thalassemia, the change in the erythrocyte density profile, possibly due to inhibition of polymerization-related increases in cell density, explains the hematological improvement.

Full text

PDF
1632

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonarakis S. E., Phillips J. A., 3rd, Kazazian H. H., Jr Genetic diseases: diagnosis by restriction endonuclease analysis. J Pediatr. 1982 Jun;100(6):845–856. doi: 10.1016/s0022-3476(82)80500-3. [DOI] [PubMed] [Google Scholar]
  2. Bertles J. F., Milner P. F. Irreversibly sickled erythrocytes: a consequence of the heterogeneous distribution of hemoglobin types in sickle-cell anemia. J Clin Invest. 1968 Aug;47(8):1731–1741. doi: 10.1172/JCI105863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brittenham G. M., Schechter A. N., Noguchi C. T. Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes. Blood. 1985 Jan;65(1):183–189. [PubMed] [Google Scholar]
  4. Bunn H. F., Haney D. N., Kamin S., Gabbay K. H., Gallop P. M. The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo. J Clin Invest. 1976 Jun;57(6):1652–1659. doi: 10.1172/JCI108436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark M. R., Greenquist A. C., Shohet S. B. Stabilization of the shape of sickled cells by calcium and A23187. Blood. 1976 Dec;48(6):899–909. [PubMed] [Google Scholar]
  6. Clark M. R., Mohandas N., Shohet S. B. Deformability of oxygenated irreversibly sickled cells. J Clin Invest. 1980 Jan;65(1):189–196. doi: 10.1172/JCI109650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Corash L. M., Piomelli S., Chen H. C., Seaman C., Gross E. Separation of erythrocytes according to age on a simplified density gradient. J Lab Clin Med. 1974 Jul;84(1):147–151. [PubMed] [Google Scholar]
  8. DANON D., MARIKOVSKY V. DETERMINATION OF DENSITY DISTRIBUTION OF RED CELL POPULATION. J Lab Clin Med. 1964 Oct;64:668–674. [PubMed] [Google Scholar]
  9. Dean J., Schechter A. N. Sickle-cell anemia: molecular and cellular bases of therapeutic approaches (third of three parts). N Engl J Med. 1978 Oct 19;299(16):863–870. doi: 10.1056/NEJM197810192991605. [DOI] [PubMed] [Google Scholar]
  10. Dover G. J., Boyer S. H., Bell W. R. Microscopic method for assaying F cell production: illustrative changes during infancy and in aplastic anemia. Blood. 1978 Oct;52(4):664–672. [PubMed] [Google Scholar]
  11. Dover G. J., Boyer S. H., Charache S., Heintzelman K. Individual variation in the production and survival of F cells in sickle-cell disease. N Engl J Med. 1978 Dec 28;299(26):1428–1435. doi: 10.1056/NEJM197812282992603. [DOI] [PubMed] [Google Scholar]
  12. Dover G. J., Boyer S. H., Pembrey M. E. F-cell production in sickle cell anemia: regulation by genes linked to beta-hemoglobin locus. Science. 1981 Mar 27;211(4489):1441–1444. doi: 10.1126/science.6162200. [DOI] [PubMed] [Google Scholar]
  13. Dover G. J., Boyer S. H. Quantitation of hemoglobins within individual red cells: asynchronous biosynthesis of fetal and adult hemoglobin during erythroid maturation in normal subjects. Blood. 1980 Dec;56(6):1082–1091. [PubMed] [Google Scholar]
  14. Eisinger J., Flores J., Bookchin R. M. The cytosol-membrane interface of normal and sickle erythrocytes. Effect of hemoglobin deoxygenation and sickling. J Biol Chem. 1984 Jun 10;259(11):7169–7177. [PubMed] [Google Scholar]
  15. Embury S. H., Clark M. R., Monroy G., Mohandas N. Concurrent sickle cell anemia and alpha-thalassemia. Effect on pathological properties of sickle erythrocytes. J Clin Invest. 1984 Jan;73(1):116–123. doi: 10.1172/JCI111181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Embury S. H., Dozy A. M., Miller J., Davis J. R., Jr, Kleman K. M., Preisler H., Vichinsky E., Lande W. N., Lubin B. H., Kan Y. W. Concurrent sickle-cell anemia and alpha-thalassemia: effect on severity of anemia. N Engl J Med. 1982 Feb 4;306(5):270–274. doi: 10.1056/NEJM198202043060504. [DOI] [PubMed] [Google Scholar]
  17. Fabry M. E., Nagel R. L. The effect of deoxygenation on red cell density: significance for the pathophysiology of sickle cell anemia. Blood. 1982 Dec;60(6):1370–1377. [PubMed] [Google Scholar]
  18. Fitzgibbons J. F., Koler R. D., Jones R. T. Red cell age-related changes of hemoglobins AIa+b and AIc in normal and diabetic subjects. J Clin Invest. 1976 Oct;58(4):820–824. doi: 10.1172/JCI108534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Higgs D. R., Aldridge B. E., Lamb J., Clegg J. B., Weatherall D. J., Hayes R. J., Grandison Y., Lowrie Y., Mason K. P., Serjeant B. E. The interaction of alpha-thalassemia and homozygous sickle-cell disease. N Engl J Med. 1982 Jun 17;306(24):1441–1446. doi: 10.1056/NEJM198206173062402. [DOI] [PubMed] [Google Scholar]
  20. Higgs D. R., Pressley L., Serjeant G. R., Clegg J. B., Weatherall D. J. The genetics and molecular basis of alpha thalassaemia in association with Hb S in Jamaican Negroes. Br J Haematol. 1981 Jan;47(1):43–56. doi: 10.1111/j.1365-2141.1981.tb02760.x. [DOI] [PubMed] [Google Scholar]
  21. Hofrichter J., Ross P. D., Eaton W. A. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4864–4868. doi: 10.1073/pnas.71.12.4864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lauer J., Shen C. K., Maniatis T. The chromosomal arrangement of human alpha-like globin genes: sequence homology and alpha-globin gene deletions. Cell. 1980 May;20(1):119–130. doi: 10.1016/0092-8674(80)90240-8. [DOI] [PubMed] [Google Scholar]
  23. Noguchi C. T. Polymerization in erythrocytes containing S and non-S hemoglobins. Biophys J. 1984 Jun;45(6):1153–1158. doi: 10.1016/S0006-3495(84)84263-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Noguchi C. T., Schechter A. N. The intracellular polymerization of sickle hemoglobin and its relevance to sickle cell disease. Blood. 1981 Dec;58(6):1057–1068. [PubMed] [Google Scholar]
  25. Noguchi C. T., Torchia D. A., Schechter A. N. Intracellular polymerization of sickle hemoglobin. Effects of cell heterogeneity. J Clin Invest. 1983 Sep;72(3):846–852. doi: 10.1172/JCI111055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oda S., Oda E., Tanaka K. R. Relationship of density distribution and pyruvate kinase electrophoretic pattern of erythrocytes in sickle cell diseases and other disorders. Acta Haematol. 1978;60(4):201–209. doi: 10.1159/000207716. [DOI] [PubMed] [Google Scholar]
  27. Pembrey M. E., Wood W. G., Weatherall D. J., Perrine R. P. Fetal haemoglobin production and the sickle gene in the oases of Eastern Saudi Arabia. Br J Haematol. 1978 Nov;40(3):415–429. doi: 10.1111/j.1365-2141.1978.tb05813.x. [DOI] [PubMed] [Google Scholar]
  28. Powars D. R., Schroeder W. A., Weiss J. N., Chan L. S., Azen S. P. Lack of influence of fetal hemoglobin levels or erythrocyte indices on the severity of sickle cell anemia. J Clin Invest. 1980 Mar;65(3):732–740. doi: 10.1172/JCI109720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Serjeant B. E., Mason K. P., Kenny M. W., Stuart J., Higgs D. R., Weatherall D. J., Hayes R. J., Serjeant G. R. Effect of alpha thalassaemia on the rheology of homozygous sickle cell disease. Br J Haematol. 1983 Nov;55(3):479–486. doi: 10.1111/j.1365-2141.1983.tb02163.x. [DOI] [PubMed] [Google Scholar]
  30. Serjeant G. R. Fetal haemoglobin in homozygous sickle cell disease. Clin Haematol. 1975 Feb;4(1):109–122. [PubMed] [Google Scholar]
  31. Steinberg M. H., Rosenstock W., Coleman M. B., Adams J. G., Platica O., Cedeno M., Rieder R. F., Wilson J. T., Milner P., West S. Effects of thalassemia and microcytosis on the hematologic and vasoocclusive severity of sickle cell anemia. Blood. 1984 Jun;63(6):1353–1360. [PubMed] [Google Scholar]
  32. Sunshine H. R., Hofrichter J., Eaton W. A. Gelation of sickle cell hemoglobin in mixtures with normal adult and fetal hemoglobins. J Mol Biol. 1979 Oct 9;133(4):435–467. doi: 10.1016/0022-2836(79)90402-9. [DOI] [PubMed] [Google Scholar]
  33. Weatherall D. J., Clegg J. B., Blankson J., McNeil J. R. A new sickling disorder resulting from interaction of the genes for haemoglobin S and alpha-thalassaemia. Br J Haematol. 1969 Dec;17(6):517–526. doi: 10.1111/j.1365-2141.1969.tb01402.x. [DOI] [PubMed] [Google Scholar]
  34. Wilson J. T., Wilson L. B., deRiel J. K., Villa-komaroff L., Efstratiadis A., Forget B. G., Weissman S. M. Insertion of synthetic copies of human globin genes into bacterial plasmids. Nucleic Acids Res. 1978 Feb;5(2):563–581. doi: 10.1093/nar/5.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. de Ceulaer K., Higgs D. R., Weatherall D. J., Hayes R. J., Serjeant B. E., Serjeant G. R. alpha-Thalassemia reduces the hemolytic rate in homozygous sickle-cell disease. N Engl J Med. 1983 Jul 21;309(3):189–190. doi: 10.1056/NEJM198307213090320. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES