Abstract
Arginine vasotocin ([8-arginine]-oxytocin) (AVT), the primary antidiuretic principle in submammalian vertebrates, has been reported to be present in mammalian pituitary and pineal glands. Although the most phyletically ubiquitous of the known neurohypophysial peptides, AVT is still not recognized as a mammalian hormone. We examined plasma, urine, and amniotic fluid from fetal lambs by radioimmunoassay (RIA) for evidence of AVT to assess the possibility of its being such a hormone. Measureable quantities of AVT-like immunoreactivity (irAVT) were observed in fetal plasma (2.4 +/- 0.2 pg/ml), urine (1.4 +/- 0.2 pg/ml), and amniotic fluid (1.9 +/- 0.2 pg/ml). Since the AVT antiserum shows minimal cross-reactivity with arginine vasopressin (AVP) and oxytocin (OT), measurements of AVP and OT concentrations in the same biological fluids also were conducted with specific antisera. The results suggest that the irAVT was not accountable on the basis of cross-reaction. To further verify the identity of the irAVT, a high pressure liquid chromatography system using RIA as a means of detection was developed. This system is sufficiently sensitive to allow the separation and quantitation of picogram quantities of the synthetic peptides AVT, AVP, and OT. In this system, the irAVT in fetal plasma, urine, and amniotic fluid appeared as a single peak coeluting with synthetic AVT. These results indicate that AVT is present in ovine fetal plasma and support the view that the fetus secretes this peptide. The physiological significance of circulating AVT remains to be defined.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander D. P., Britton H. G., Forsling M. L., Nixon D. A., Ratcliffe J. G. Pituitary and plasma concentrations of adrenocorticotrophin, growth hormone, vasopressin and oxytocin in fetal and maternal sheep during the latter half of gestation and the response to haemorrhage. Biol Neonate. 1974;24(3):206–219. doi: 10.1159/000240652. [DOI] [PubMed] [Google Scholar]
- Artman H. G., Leake R. D., Weitzman R. E., Sawyer W. H., Fisher D. A. Radioimmunoassay of vasotocin, vasopressin, and oxytocin in human neonatal cerebrospinal and amniotic fluid. Dev Pharmacol Ther. 1984;7(1):39–49. doi: 10.1159/000457142. [DOI] [PubMed] [Google Scholar]
- Chauvet M. T., Hurpet D., Chauvet J., Acher R. Phenypressin (Phe2-Arg8-vasopressin), a new neurohypophysial peptide found in marsupials. Nature. 1980 Oct 16;287(5783):640–642. doi: 10.1038/287640a0. [DOI] [PubMed] [Google Scholar]
- Cheesman D. W., Fariss B. L. Isolation and characterization of a gonadotropin-inhibiting substance from the bovine pineal gland. Proc Soc Exp Biol Med. 1970 Apr;133(4):1254–1256. doi: 10.3181/00379727-133-34664. [DOI] [PubMed] [Google Scholar]
- Dogterom J., Snijdewint F. G., Pévet P., Swaab D. F. Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and fetal pituitary gland: failure to demonstrate vasotocin in mammals. J Endocrinol. 1980 Jan;84(1):115–123. doi: 10.1677/joe.0.0840115. [DOI] [PubMed] [Google Scholar]
- Fernstrom J. D., Fisher L. A., Cusack B. M., Gillis M. A. Radioimmunologic detection and measurement of nonapeptides in the pineal gland. Endocrinology. 1980 Jan;106(1):243–251. doi: 10.1210/endo-106-1-243. [DOI] [PubMed] [Google Scholar]
- Gauquelin G., Geelen G., Allevard-Burguburu A. M., Cellier M., Sempore B., Louis F., Legros J. J., Gharib C. Presence of neurophysins I and II in the human pineal gland: comparison with the content of neurohypophyseal hormones. Peptides. 1982 Sep-Oct;3(5):805–809. doi: 10.1016/0196-9781(82)90019-5. [DOI] [PubMed] [Google Scholar]
- Geelen G., Allevard-Burguburu A. M., Gauquelin G., Xiao Y. Z., Frutoso J., Gharib C., Sempore B., Meunier C., Augoyard G. Radioimmunoassay of arginine vasopressin, oxytocin and arginine vasotocin-like material in the human pineal gland. Peptides. 1981 Winter;2(4):459–466. doi: 10.1016/s0196-9781(81)80105-2. [DOI] [PubMed] [Google Scholar]
- Glatz T. H., Weitzman R. E., Nathanielsz P. W., Fisher D. A. Metabolic clearance rate and transplacental passage of oxytocin in the pregnant ewe and fetus. Endocrinology. 1980 Mar;106(3):1006–1011. doi: 10.1210/endo-106-3-1006. [DOI] [PubMed] [Google Scholar]
- LaRochelle F. T., Jr, North W. G., Stern P. A new extraction of arginine vasopressin from blood: the use of octadecasilyl-silica. Pflugers Arch. 1980 Aug;387(1):79–81. doi: 10.1007/BF00580849. [DOI] [PubMed] [Google Scholar]
- Leake R. D., Stegner H., Palmer S. M., Oakes G. K., Fisher D. A. Arginine vasopressin and arginine vasotocin inhibit ovine fetal/maternal water transfer. Pediatr Res. 1983 Jul;17(7):583–586. doi: 10.1203/00006450-198307000-00013. [DOI] [PubMed] [Google Scholar]
- Pavel S., Goldstein R., Calb M. Vasotocin content in the pineal gland of foetal, newborn and adult male rats. J Endocrinol. 1975 Aug;66(2):283–284. doi: 10.1677/joe.0.0660283. [DOI] [PubMed] [Google Scholar]
- Pavel S. Presence of relatively high concentrations of arginine vasotocin in the cerebrospinal fluid of newborns and infants. J Clin Endocrinol Metab. 1980 Feb;50(2):271–273. doi: 10.1210/jcem-50-2-271. [DOI] [PubMed] [Google Scholar]
- Pavel S. Vasotocin biosynthesis by neurohypophysial cells from human fetuses. Evidence for its ependymal origin. Neuroendocrinology. 1975;19(2):150–159. doi: 10.1159/000122435. [DOI] [PubMed] [Google Scholar]
- Rosenbloom A. A., Fisher D. A. Radioimmunoassay of arginine vasotocin. Endocrinology. 1974 Dec;95(6):1726–1732. doi: 10.1210/endo-95-6-1726. [DOI] [PubMed] [Google Scholar]
- Ross M. G., Ervin G., Leake R. D., Fu P., Fisher D. A. Fetal lung liquid regulation by neuropeptides. Am J Obstet Gynecol. 1984 Oct 15;150(4):421–425. doi: 10.1016/s0002-9378(84)80151-9. [DOI] [PubMed] [Google Scholar]
- Ross M. G., Ervin M. G., Leake R. D., Oakes G., Hobel C., Fisher D. A. Bulk flow of amniotic fluid water in response to maternal osmotic challenge. Am J Obstet Gynecol. 1983 Nov 15;147(6):697–701. doi: 10.1016/0002-9378(83)90454-4. [DOI] [PubMed] [Google Scholar]
- Skowsky W. R., Fisher D. A. The use of thyroglobulin to induce antigenicity to small molecules. J Lab Clin Med. 1972 Jul;80(1):134–144. [PubMed] [Google Scholar]
- Skowsky W. R., Rosenbloom A. A., Fisher D. A. Radioimmunoassay measurement of arginine vasopressin in serum: development and application. J Clin Endocrinol Metab. 1974 Feb;38(2):278–287. doi: 10.1210/jcem-38-2-278. [DOI] [PubMed] [Google Scholar]
- Smith A., McIntosh N. Neurohypophysial peptides in the human fetus: presence in pituitary extracts of immunoreactive arginine-vasotocin. J Endocrinol. 1983 Dec;99(3):441–445. doi: 10.1677/joe.0.0990441. [DOI] [PubMed] [Google Scholar]
- Stegner H., Leake R. D., Palmer S. M., Morris A. M., Fisher D. A. Arginine vasopressin metabolic clearance and production rates in fetal sheep, pregnant ewes, and lambs. Dev Pharmacol Ther. 1984;7(2):87–93. doi: 10.1159/000457149. [DOI] [PubMed] [Google Scholar]
- Vizsolyi E., Perks A. M. New neurohypophysial principle in foetal mammals. Nature. 1969 Sep 13;223(5211):1169–1171. doi: 10.1038/2231169a0. [DOI] [PubMed] [Google Scholar]
- Weitzman R. E., Fisher D. A. Arginine vasopressin metabolism in dogs. I. Evidence for a receptor-mediated mechanism. Am J Physiol. 1978 Dec;235(6):E591–E597. doi: 10.1152/ajpendo.1978.235.6.E591. [DOI] [PubMed] [Google Scholar]
- Weitzman R. E., Glatz T. H., Fisher D. A. The effect of hemorrhage and hypertonic saline upon plasma oxytocin and arginine vasopressin in conscious dogs. Endocrinology. 1978 Dec;103(6):2154–2160. doi: 10.1210/endo-103-6-2154. [DOI] [PubMed] [Google Scholar]
- Weitzman R. E., Reviczky A., Oddie T. H., Fisher D. A. Effect of osmolality on arginine vasopressin and renin release after hemorrhage. Am J Physiol. 1980 Jan;238(1):E62–E68. doi: 10.1152/ajpendo.1980.238.1.E62. [DOI] [PubMed] [Google Scholar]
